2 回答

TA貢獻1783條經驗 獲得超4個贊
這個是相當棘手的。請嘗試下面的代碼片段:
import pandas as pd
url = 'http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_complete.txt'
df = pd.read_csv(url,
sep='\s+',
comment='%',
usecols=(0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11),
names=('Year', 'Month', 'M.Anomaly', 'M.Unc.', 'A.Anomaly',
'A.Unc.','5y.Anomaly', '5y.Unc.' ,'10y.Anomaly', '10y.Unc.',
'20y.Anomaly', '20y.Unc.'))

TA貢獻1772條經驗 獲得超8個贊
問題是該文件有 77 行注釋文本,例如
'Global Average Temperature Anomaly with Sea Ice Temperature Inferred from Air Temperatures'
其中兩行是標題
有一堆數據,然后還有兩個標頭,以及一組新數據
'Global Average Temperature Anomaly with Sea Ice Temperature Inferred from Water Temperatures'
該解決方案將文件中的兩個表分成單獨的數據幀。
這不像其他答案那么好,但數據被正確地分成不同的數據幀。
標題很痛苦,手動創建自定義標題并跳過將標題與文本分開的代碼行可能會更容易。
重要的一點是
air
與ice
數據分離。
import requests
import pandas as pd
import math
# read the file with requests
url = 'http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_complete.txt'
response = requests.get(url)
data = response.text
# convert data into a list
data = [d.strip().replace('% ', '') for d in data.split('\n')]
# specify the data from the ranges in the file
air_header1 = data[74].split() # not used
air_header2 = [v.strip() for v in data[75].split(',')]
# combine the 2 parts of the header into a single header
air_header = air_header2[:2] + [f'{air_header1[math.floor(i/2)]}_{v}' for i, v in enumerate(air_header2[2:])]
air_data = [v.split() for v in data[77:2125]]
h2o_header1 = data[2129].split() # not used
h2o_header2 = [v.strip() for v in data[2130].split(',')]
# combine the 2 parts of the header into a single header
h2o_header = h2o_header2[:2] + [f'{h2o_header1[math.floor(i/2)]}_{v}' for i, v in enumerate(h2o_header2[2:])]
h2o_data = [v.split() for v in data[2132:4180]]
# create the dataframes
air = pd.DataFrame(air_data, columns=air_header)
h2o = pd.DataFrame(h2o_data, columns=h2o_header)
沒有標題代碼
通過使用手動標頭列表來簡化代碼。
import pandas as pd
import requests
# read the file with requests
url = 'http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_complete.txt'
response = requests.get(url)
data = response.text
# convert data into a list
data = [d.strip().replace('% ', '') for d in data.split('\n')]
# manually created header
headers = ['Year', 'Month', 'Monthly_Anomaly', 'Monthly_Unc.',
'Annual_Anomaly', 'Annual_Unc.',
'Five-year_Anomaly', 'Five-year_Unc.',
'Ten-year_Anomaly', 'Ten-year_Unc.',
'Twenty-year_Anomaly', 'Twenty-year_Unc.']
# separate the air and h2o data
air_data = [v.split() for v in data[77:2125]]
h2o_data = [v.split() for v in data[2132:4180]]
# create the dataframes
air = pd.DataFrame(air_data, columns=headers)
h2o = pd.DataFrame(h2o_data, columns=headers)
air
Year Month Monthly_Anomaly Monthly_Unc. Annual_Anomaly Annual_Unc. Five-year_Anomaly Five-year_Unc. Ten-year_Anomaly Ten-year_Unc. Twenty-year_Anomaly Twenty-year_Unc.
0 1850 1 -0.777 0.412 NaN NaN NaN NaN NaN NaN NaN NaN
1 1850 2 -0.239 0.458 NaN NaN NaN NaN NaN NaN NaN NaN
2 1850 3 -0.426 0.447 NaN NaN NaN NaN NaN NaN NaN NaN
h2o
Year Month Monthly_Anomaly Monthly_Unc. Annual_Anomaly Annual_Unc. Five-year_Anomaly Five-year_Unc. Ten-year_Anomaly Ten-year_Unc. Twenty-year_Anomaly Twenty-year_Unc.
0 1850 1 -0.724 0.370 NaN NaN NaN NaN NaN NaN NaN NaN
1 1850 2 -0.221 0.430 NaN NaN NaN NaN NaN NaN NaN NaN
2 1850 3 -0.443 0.419 NaN NaN NaN NaN NaN NaN NaN NaN
添加回答
舉報