我從網上人類患病icd-11分類下載了一個json文件,該數據最多有8層嵌套,例如:? "name":"br08403",? ? "children":[? ? {? ? ? ? "name":"01 Certain infectious or parasitic diseases",? ? ? ? "children":[? ? ? ? {? ? ? ? ? ? "name":"Gastroenteritis or colitis of infectious origin",? ? ? ? ? ? "children":[? ? ? ? ? ? {? ? ? ? ? ? ? ? "name":"Bacterial intestinal infections",? ? ? ? ? ? ? ? "children":[? ? ? ? ? ? ? ? {? ? ? ? ? ? ? ? ? ? "name":"1A00? Cholera",? ? ? ? ? ? ? ? ? ? "children":[? ? ? ? ? ? ? ? ? ? {? ? ? ? ? ? ? ? ? ? ? ? "name":"H00110? Cholera"? ? ? ? ? ? ? ? ? ? }我嘗試使用以下代碼:def flatten_json(nested_json):? ? """? ? ? ? Flatten json object with nested keys into a single level.? ? ? ? Args:? ? ? ? ? ? nested_json: A nested json object.? ? ? ? Returns:? ? ? ? ? ? The flattened json object if successful, None otherwise.? ? """? ? out = {}? ? def flatten(x, name=''):? ? ? ? if type(x) is dict:? ? ? ? ? ? for a in x:? ? ? ? ? ? ? ? flatten(x[a], name + a + '_')? ? ? ? elif type(x) is list:? ? ? ? ? ? i = 0? ? ? ? ? ? for a in x:? ? ? ? ? ? ? ? flatten(a, name + str(i) + '_')? ? ? ? ? ? ? ? i += 1? ? ? ? else:? ? ? ? ? ? out[name[:-1]] = x? ? flatten(nested_json)? ? return outdf2 = pd.Series(flatten_json(dictionary)).to_frame()我得到的輸出是:name? ? br08403children_0_name 01 Certain infectious or parasitic diseaseschildren_0_children_0_name? Gastroenteritis or colitis of infectious originchildren_0_children_0_children_0_name? ?Bacterial intestinal infectionschildren_0_children_0_children_0_children_0_name? ? 1A00 Cholera... ...children_21_children_17_children_10_name? ? NF0A Certain early complications of trauma, n...children_21_children_17_children_11_name? ? NF0Y Other specified effects of external causeschildren_21_children_17_children_12_name? ? NF0Z Unspecified effects of external causeschildren_21_children_18_name? ? NF2Y Other specified injury, poisoning or cer...children_21_children_19_name? ? NF2Z Unspecified injury, poisoning or certain..但所需的輸出是一個具有 8 列的數據框,它可以容納嵌套名稱鍵的最后深度,例如:
1 回答

肥皂起泡泡
TA貢獻1829條經驗 獲得超6個贊
一種簡單的pandas迭代方法。
res = requests.get("https://www.genome.jp/kegg-bin/download_htext?htext=br08403.keg&format=json&filedir=")
js = res.json()
df = pd.json_normalize(js)
for i in range(20):
df = pd.json_normalize(df.explode("children").to_dict(orient="records"))
if "children" in df.columns: df.drop(columns="children", inplace=True)
df = df.rename(columns={"children.name":f"level{i}","children.children":"children"})
if df[f"level{i}"].isna().all() or "children" not in df.columns: break
添加回答
舉報
0/150
提交
取消