在我的df文件中,下面的每個實體(Grubhub、Toasttab、Tenk)都有一列,并且每行的該列值中都顯示“是”或“否”,我有以下代碼,例如:df['Grubhub'] = df[['On GrubHub or Seamless?']].apply(lambda x: any(x == 'Yes'), axis = 1)df['ToastTab'] = df[['On ToastTab?']].apply(lambda x: any(x == 'Yes'), axis = 1)df['Tenk'] = df[['On Tenk?']].apply(lambda x: any(x == 'Yes'), axis = 1)df['Udemy'] = df[['On Udmey?']].apply(lambda x: any(x == 'Yes'), axis = 1)df['Postmates'] = df[['On Postmates?']].apply(lambda x: any(x == 'Yes'), axis = 1)df['Doordash'] = df[['On DoorDash?']].apply(lambda x: any(x == 'Yes'), axis = 1)df['Google'] = df[['On Goole?']].apply(lambda x: any(x == 'Yes'), axis = 1)這為每個實體( Grubhub、Toasttab、Tenk )提供了一個新列,并且該列給出了 true 或 false 值,是否有一種更有效的方法可以在一行代碼或函數中完成所有這些操作?感謝您提前的幫助
1 回答

至尊寶的傳說
TA貢獻1789條經驗 獲得超10個贊
您可以創建一個列圖并應用function內部loop:
columns_map = (
('Grubhub', 'On GrubHub or Seamless?'),
('ToastTab', 'On ToastTab?'),
('Tenk', 'On Tenk?'),
# etc ...
)
for new_col, alias in columns_map:
df[new_col] = df[alias].apply(lambda x: x == 'Yes')
# also you can easily remove aliases columns:
# df = df.drop(columns=[alias])
或者您可以將值設置到原始列中并根據需要重命名(不帶drop()):
for new_col, alias in columns_map:
df[alias] = df[alias].apply(lambda x: x == 'Yes')
df.rename(
columns={alias: new_col for new_col, alias in columns_map},
inplace=True
)
添加回答
舉報
0/150
提交
取消