1d我正在嘗試為循環信號cos(x)等創建一個去噪自動編碼器。創建數據集的過程是我傳遞一個循環函數列表,并且對于生成的每個示例,它為列表中的每個函數滾動隨機系數,因此生成的每個函數都是不同的但循環的。例如 -0.856cos(x) - 1.3cos(0.1x)然后我添加噪聲并將信號標準化為介于[0, 1).接下來,我在其上訓練我的自動編碼器,但它學會輸出一個常量(通常是0.5)。我的猜測是它發生是因為0.5是歸一化函數的通常平均值。但這根本不是我渴望得到的結果。我提供了我為自動編碼器、數據生成器和訓練循環編寫的代碼,以及描述我遇到的問題的兩張圖片。第一個例子:第二個例子:線性自動編碼器:class LinAutoencoder(nn.Module): def __init__(self, in_channels, K, B, z_dim, out_channels): super(LinAutoencoder, self).__init__() self.in_channels = in_channels self.K = K # number of samples per 2pi interval self.B = B # how many intervals self.out_channels = out_channels encoder_layers = [] decoder_layers = [] encoder_layers += [ nn.Linear(in_channels * K * B, 2*z_dim, bias=True), nn.ReLU(), nn.Linear(2*z_dim, z_dim, bias=True), nn.ReLU(), nn.Linear(z_dim, z_dim, bias=True), nn.ReLU() ] decoder_layers += [ nn.Linear(z_dim, z_dim, bias=True), nn.ReLU(), nn.Linear(z_dim, 2*z_dim, bias=True), nn.ReLU(), nn.Linear(2*z_dim, out_channels * K * B, bias=True), nn.Tanh() ] self.encoder = nn.Sequential(*encoder_layers) self.decoder = nn.Sequential(*decoder_layers) def forward(self, x): batch_size = x.shape[0] x_flat = torch.flatten(x, start_dim=1) enc = self.encoder(x_flat) dec = self.decoder(enc) res = dec.view((batch_size, self.out_channels, self.K * self.B)) return res
添加回答
舉報
0/150
提交
取消