我正在嘗試通過 python3 對 numpy 數組進行一些計算。數組:? ?c0 c1 c2 c3r0 1? 5? 2? 7r1 3? 9? 4? 6r2 8? 2? 1? 3這里的“cx”和“rx”是列名和行名。如果元素不在給定的列列表中,我需要逐行計算每個元素的差異。例如?given a column list? [0, 2, 1] # they are column indices?which means that?? ? for r0, we need to calculate the difference between the c0 and all other columns, so we have?? ? [1, 5-1, 2-1, 7-1]? ? for r1,? we need to calculate the difference between the c2 and all other columns, so we have?? ? [3-4, 9-4, 4, 6-4]? ? for r2,? we need to calculate the difference between the c1 and all other columns, so we have?? ? [8-2, 2, 1-2, 3-2]所以,結果應該是? ?1 4 1 6? ?-1 5 4 2? ?6 2 -1 1因為數組可能非常大,所以我想通過 numpy 向量化操作(例如廣播)進行計算。但是,我不確定如何有效地做到這一點。我已經檢查了對 numpy 數組的矢量化操作、對 Numpy 切片操作進行矢量化、對大型 NumPy 乘法進行矢量化、用 Numpy 向量化操作替換 For 循環、對循環對 numpy 數組進行矢量化。但是,它們都不適合我。謝謝你的幫助 !
1 回答

喵喵時光機
TA貢獻1846條經驗 獲得超7個贊
先從數組中提取值,然后做減法:
import numpy as np
a = np.array([[1, 5, 2, 7],
[3, 9, 4, 6],
[8, 2, 1, 3]])
cols = [0,2,1]
# create the index for advanced indexing
idx = np.arange(len(a)), cols
# extract values
vals = a[idx]
# subtract array by the values
a -= vals[:, None]
# add original values back to corresponding position
a[idx] += vals
print(a)
#[[ 1 4 1 6]
# [-1 5 4 2]
# [ 6 2 -1 1]]
添加回答
舉報
0/150
提交
取消