我正在使用 ML.NET 二進制分類算法和威斯康星州乳腺癌數據。訓練模型后,我發現每個實例都被評估為錯誤。在我的測試文件中,我有 100 個實例。75 個負數和 25 個正數。因此,從指標來看,準確度為 0.75,負精度為 0.75。這意味著所有實例都使用 0(假)進行評估。private static string trainingDataPath = Path.Combine(Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "uploads"), "data.csv"); private static string testDataPath = Path.Combine(Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "uploads"), "test.csv"); public bool checkDiagnostic (BreastCancerData input) { // set up a new machine learning context var mlContext = new MLContext(); // load training and test data var trainingDataView = mlContext.Data.LoadFromTextFile<BreastCancerData>(trainingDataPath, hasHeader: false, separatorChar: ','); var testDataView = mlContext.Data.LoadFromTextFile<BreastCancerData>(testDataPath, hasHeader: false, separatorChar: ','); // Preview the data. //var dataPreview = trainingDataView.Preview(maxRows:700); //var dataPreview2 = testDataView.Preview(); // the rest of the training code goes here... var trainer = mlContext.BinaryClassification.Trainers.LinearSvm("Label", "Features"); var trainingPipeline = mlContext.Transforms.Concatenate(outputColumnName: "Features", nameof(BreastCancerData.AreaMean), nameof(BreastCancerData.AreaSe), nameof(BreastCancerData.AreaWorst), nameof(BreastCancerData.CompactnessMean), nameof(BreastCancerData.CompactnessSe), nameof(BreastCancerData.CompactnessWorst), nameof(BreastCancerData.ConcavePointsMean), nameof(BreastCancerData.ConcavePointsSe), nameof(BreastCancerData.ConcavePointsWorst), nameof(BreastCancerData.ConcavityMean), nameof(BreastCancerData.ConcavitySe), nameof(BreastCancerData.ConcavityWorst), nameof(BreastCancerData.FractalDimensionMean),
添加回答
舉報
0/150
提交
取消