我正在嘗試復制一個我能夠遵循并運行教程的模型,但這次使用的是我自己的數據。我能夠將自己的 MRI 圖像轉換為 numpy 數組,其維度與教程數據的數組相同。我嘗試用我自己的數組替換教程中的 numpy 數組,并為正常或異常(大小寫,不是大小寫)編寫我自己的虛構 csv 文件。但是,當我運行它時,我得到:(Pytorch) C:\Users\GlaDOS\PythonProjects\dicomnpy>python train.py -t acl -p sagittal --epochs=10 --prefix_name hueTraceback (most recent call last): File "train.py", line 277, in <module> run(args) File "train.py", line 214, in run mrnet, train_loader, epoch, num_epochs, optimizer, writer, current_lr, log_every) File "train.py", line 34, in train_model for i, (image, label, weight) in enumerate(train_loader): File "C:\Users\GlaDOS\anaconda3\envs\Pytorch\lib\site-packages\torch\utils\data\dataloader.py", line 345, in __next__ data = self._next_data() File "C:\Users\GlaDOS\anaconda3\envs\Pytorch\lib\site-packages\torch\utils\data\dataloader.py", line 385, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "C:\Users\GlaDOS\anaconda3\envs\Pytorch\lib\site-packages\torch\utils\data\_utils\fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\Users\GlaDOS\anaconda3\envs\Pytorch\lib\site-packages\torch\utils\data\_utils\fetch.py", line 44, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\Users\GlaDOS\PythonProjects\dicomnpy\dataloader.py", line 56, in __getitem__ array = self.transform(array) File "c:\users\glados\src\torchsample\torchsample\transforms\tensor_transforms.py", line 32, in __call__ inputs = transform(*inputs) File "C:\Users\GlaDOS\anaconda3\envs\Pytorch\lib\site-packages\torchvision\transforms\transforms.py", line 313, in __call__ return self.lambd(img) File "train.py", line 167, in <lambda> transforms.Lambda(lambda x: torch.Tensor(x)),現在我想知道這個錯誤是否意味著我沒有以某種方式將我的 MRI 轉換為“正確的”numpy 數組類型?如果是這樣,我該如何將它們更改為正確的類型?
添加回答
舉報
0/150
提交
取消