2 回答

TA貢獻1802條經驗 獲得超6個贊
所以訣竅是能夠編寫一個函數cartesian_product(),該函數將數字列表作為輸入并返回索引的笛卡爾積,考慮到數字可能是列表的大小。
例如,如果我們有 2 個大小為 2 和 6 的列表(根據您的示例),則cartesian_product([2, 6])應該生成輸出:
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2], [0, 3], [1, 3], [0, 4], [1, 4], [0, 5], [1, 5]]
def cartesian_product(sizes, start=0):
if not sizes:
return []
if start == len(sizes) - 1:
return [[i] for i in range(sizes[-1])]
sub_answer_lists = cartesian_product(sizes, start+1)
ans = []
for sub_ans_list in sub_answer_lists:
for j in range(sizes[start]):
list_copy = [j]
list_copy.extend(sub_ans_list)
ans.append(list_copy)
return ans
def unpack_parameters(params_dict):
param_keys = []
param_lists = []
for key, lst in params_dict.items():
param_keys.append(key)
param_lists.append(lst)
param_lists_sizes = [len(lst) for lst in param_lists]
cartesian_product_indices = cartesian_product(param_lists_sizes)
param_map_list = []
for indices in cartesian_product_indices:
param_map = {}
for i, index in enumerate(indices):
param_key = param_keys[i]
param_map[param_key] = param_lists[i][index]
param_map_list.append(param_map)
return param_map_list
experiment_definitions = {
'sklearn.tree.DecisionTreeClassifier':
{'criterion': ['entropy', 'gini'],
'min_samples_split': [2, 4, 8, 16, 32, 64]}
}
classifiers = {}
for classifier_class, params_dict in experiment_definitions.items():
classifiers[classifier_class] = unpack_parameters(params_dict)
print(classifiers)
輸出:
{'sklearn.tree.DecisionTreeClassifier': [{'criterion': 'entropy', 'min_samples_split': 2}, {'criterion': 'gini', 'min_samples_split': 2}, {'criterion': 'entropy', 'min_samples_split': 4}, {'criterion': 'gini', 'min_samples_split': 4}, {'criterion': 'entropy', 'min_samples_split': 8}, {'criterion': 'gini', 'min_samples_split': 8}, {'criterion': 'entropy', 'min_samples_split': 16}, {'criterion': 'gini', 'min_samples_split': 16}, {'criterion': 'entropy', 'min_samples_split': 32}, {'criterion': 'gini', 'min_samples_split': 32}, {'criterion': 'entropy', 'min_samples_split': 64}, {'criterion': 'gini', 'min_samples_split': 64}]}
編輯:
使用更少內存的生成器版本:
def cartesian_product(sizes, start=0):
if not sizes:
yield []
return
if start == len(sizes) - 1:
for i in range(sizes[-1]):
yield [i]
return
for sub_ans_list in cartesian_product(sizes, start+1):
for j in range(sizes[start]):
list_copy = [j]
list_copy.extend(sub_ans_list)
yield list_copy

TA貢獻1765條經驗 獲得超5個贊
是的,像這樣:
def product(names, values, current=[])
pos = len(current)
if pos >= len(names):
# a solution
solutions.append(current.copy())
return
for v in values[pos]:
current.append((names[pos], v)
product(names, values, current)
current.pop()
添加回答
舉報