我正在使用Kaggle - 心血管疾病數據集中的數據集。模型已經過訓練,我想做的是標記以動態方式插入的單個輸入(一行13個值)。數據集的形狀為 13 個特征 + 1 個目標,66k 行#prepare dataset for train and testdfCardio = load_csv("cleanCardio.csv")y = dfCardio['cardio']x = dfCardio.drop('cardio',axis = 1, inplace=False)model = knn = KNeighborsClassifier()x_train,x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,random_state=42)model.fit(x_train, y_train)# make predictions for test datay_pred = model.predict(x_test)predictions = [round(value) for value in y_pred]# evaluate predictionsaccuracy = accuracy_score(y_test, predictions)print("Accuracy: %.2f%%" % (accuracy * 100.0))ML是訓練的,我想做的是預測這一行的標簽:['69','1','151','22','37','0','65','140','90','2','1','0','0','1']為目標返回 0 或 1。所以我寫了這個代碼:import numpy as npimport pandas as pdsingle = np.array(['69','1','151','22','37','0','65','140','90','2','1','0','0','1'])singledf = pd.DataFrame(single)final=singledf.transpose()prediction = model.predict(final)print(prediction)但它給出了錯誤:查詢數據維度必須與訓練數據維度匹配如何修復單行的標簽?為什么我無法預測單個病例?
KNN - 在 python 中預測單個案例
慕田峪4524236
2022-08-02 10:40:53