我正在嘗試使用以下方法公開data_all哪個是datapython的向量pybind11:struct data { std::vector<Eigen::ArrayXf> values; std::vector<int> indices; float x; float y; float z;};class dataBuffer {public: std::vector<data> data_all; Eigen::ArrayXf getValues(ssize_t i, ssize_t j) { return data_all.at(i).values.at(j); };};我將pybind11包裝器定義如下:PYBIND11_MODULE(example, m) { py::class_<data>(m, "data") .def(py::init<>()) .def_readonly("values", &data::values) .def_readonly("indices", &data::indices) .def_readonly("x", &data::x) .def_readonly("y", &data::y) .def_readonly("z", &data::z); py::class_<dataBuffer>(m, "dataBuffer") .def(py::init<>()) .def("getValues", &dataBuffer::getValues);}我的 C++ 示例代碼是namespace py = pybind11;int main(){ data d; d.x = 1.1; d.y = 2.1; d.z = 3.1; d.indices.push_back(4); d.values.push_back(Eigen::ArrayXf::LinSpaced(50, 0.0, 50 - 1.0)); d.indices.push_back(5); d.values.push_back(Eigen::ArrayXf::LinSpaced(60, 0.0, 60 - 1.0)); d.indices.push_back(11); d.values.push_back(Eigen::ArrayXf::LinSpaced(70, 0.0, 70 - 1.0)); dataBuffer D; D.data_all.push_back(d); D.data_all.push_back(d); std::cout << D.getValues(0,0) << "\n"; py::scoped_interpreter guard{}; py::object result = py::module::import("pybind11_test").attr("testData")(0,0);}pybind11_test.py文件的內容import numpy as npimport example as mdef testData(buffer): help(buffer) a = buffer.getValues(0,0) # trying to retrieve the data buffer created in C++ print(a)help(buffer)打印以下簽名:Help on method getValues in module example:getValues(...) method of example.dataBuffer instance getValues(self: example.dataBuffer, arg0: int, arg1: int) -> Eigen::Array<float,-1,1,0,-1,1>我相信EigenPython 不喜歡返回類型。有人可以幫我解決問題嗎?我應該如何幫助 Python 理解返回類型,getValues以便我可以使用numpy庫進一步處理它?
1 回答

人到中年有點甜
TA貢獻1895條經驗 獲得超7個贊
我假設這條線:
py::object result = py::module::import("pybind11_test").attr("testData")(0,0);
本來是:
py::object result = py::module::import("pybind11_test").attr("testData")(D);
除此之外,您所缺少的是:
#include "pybind11/eigen.h"
在包裝代碼的頂部。
添加回答
舉報
0/150
提交
取消