1 回答

TA貢獻1827條經驗 獲得超8個贊
您不需要x=x.view(-1,1)andx = x.squeeze(1)在您的forward功能中。刪除這兩行。您的輸出形狀將是(batch_size, 9).
此外,您需要轉換labels為 one-hot 編碼,其形狀為(batch_size, 9).
class LargeNet(nn.Module):
def __init__(self):
super(LargeNet, self).__init__()
self.name = "large"
self.conv1 = nn.Conv2d(3, 5, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(5, 10, 5)
self.fc1 = nn.Linear(10 * 53 * 53, 32)
self.fc2 = nn.Linear(32, 9)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 10*53*53)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model2 = LargeNet()
#Loss and optimizer
criterion = nn.BCEWithLogitsLoss()
# nn.BCELoss()
optimizer = optim.SGD(model2.parameters(), lr=0.1, momentum=0.9)
images = torch.from_numpy(np.random.randn(2,3,224,224)).float() # fake images, batch_size is 2
labels = torch.tensor([1,2]).long() # fake labels
outputs = model2(images)
one_hot_labels = torch.eye(9)[labels]
loss = criterion(outputs, one_hot_labels)
添加回答
舉報