2 回答

TA貢獻1898條經驗 獲得超8個贊
3-為了提高性能,您可以在不使用的情況下按 CPU 內核劃分任務lock sync.RWMutex:
+30x使用通道和 進行優化runtime.NumCPU(),這需要2ms2 核和993μs8 核,而您的示例代碼需要61ms2 核和40ms8 核:
請參閱此工作示例代碼和輸出:
package main
import (
"fmt"
"math"
"runtime"
"time"
)
func main() {
nCPU := runtime.NumCPU()
fmt.Println("nCPU =", nCPU)
ch := make(chan float64, nCPU)
startTime := time.Now()
a := 0.0
b := 1.0
n := 100000.0
deltax := (b - a) / n
stepPerCPU := n / float64(nCPU)
for start := 0.0; start < n; {
stop := start + stepPerCPU
go f(start, stop, a, deltax, ch)
start = stop
}
integral := 0.0
for i := 0; i < nCPU; i++ {
integral += <-ch
}
fmt.Println(time.Now().Sub(startTime))
fmt.Println(deltax * integral)
}
func f(start, stop, a, deltax float64, ch chan float64) {
result := 0.0
for i := start; i < stop; i++ {
result += math.Sqrt(a + deltax*(i+0.5))
}
ch <- result
}
2核輸出:
nCPU = 2
2.0001ms
0.6666666685900485
8核輸出:
nCPU = 8
993μs
0.6666666685900456
您的示例代碼,2 核輸出:
0.6666666685900424
61.0035ms
您的示例代碼,8 核輸出:
0.6666666685900415
40.9964ms
2-為了獲得良好的基準統計數據,請使用大量樣本(大 n):
正如您在此處看到的,使用 2 個內核需要2 個內核,但在使用 1 個內核的同110ms一個 CPU 上,這需要: 215msn := 10000000.0
使用n := 10000000.0單個 goroutine,請參閱此工作示例代碼:
package main
import (
"fmt"
"math"
"time"
)
func main() {
now := time.Now()
a := 0.0
b := 1.0
n := 10000000.0
deltax := (b - a) / n
result := 0.0
for i := 0.0; i < n; i++ {
result += math.Sqrt(a + deltax*(i+0.5))
}
fmt.Println(time.Now().Sub(now))
fmt.Println(deltax * result)
}
輸出:
215.0123ms
0.6666666666685884
使用n := 10000000.0和 2 個 goroutine,請參閱此工作示例代碼:
package main
import (
"fmt"
"math"
"runtime"
"time"
)
func main() {
nCPU := runtime.NumCPU()
fmt.Println("nCPU =", nCPU)
ch := make(chan float64, nCPU)
startTime := time.Now()
a := 0.0
b := 1.0
n := 10000000.0
deltax := (b - a) / n
stepPerCPU := n / float64(nCPU)
for start := 0.0; start < n; {
stop := start + stepPerCPU
go f(start, stop, a, deltax, ch)
start = stop
}
integral := 0.0
for i := 0; i < nCPU; i++ {
integral += <-ch
}
fmt.Println(time.Now().Sub(startTime))
fmt.Println(deltax * integral)
}
func f(start, stop, a, deltax float64, ch chan float64) {
result := 0.0
for i := start; i < stop; i++ {
result += math.Sqrt(a + deltax*(i+0.5))
}
ch <- result
}
輸出:
nCPU = 2
110.0063ms
0.6666666666686073
1- Goroutines 的數量有一個最佳點,從這一點開始,增加 Goroutines 的數量并不會減少程序執行時間:
在 2 核 CPU 上,使用以下代碼,結果是:
nCPU: 1, 2, 4, 8, 16
Time: 2.1601236s, 1.1220642s, 1.1060633s, 1.1140637s, 1.1380651s
正如你所看到的nCPU=1 ,nCPU=2減少量已經足夠大,但在此之后它并不多,所以nCPU=22 Cores CPU 是此示例代碼的最佳點,所以在這里使用 nCPU := runtime.NumCPU()就足夠了。
package main
import (
"fmt"
"math"
"time"
)
func main() {
nCPU := 2 //2.1601236s@1 1.1220642s@2 1.1060633s@4 1.1140637s@8 1.1380651s@16
fmt.Println("nCPU =", nCPU)
ch := make(chan float64, nCPU)
startTime := time.Now()
a := 0.0
b := 1.0
n := 100000000.0
deltax := (b - a) / n
stepPerCPU := n / float64(nCPU)
for start := 0.0; start < n; {
stop := start + stepPerCPU
go f(start, stop, a, deltax, ch)
start = stop
}
integral := 0.0
for i := 0; i < nCPU; i++ {
integral += <-ch
}
fmt.Println(time.Now().Sub(startTime))
fmt.Println(deltax * integral)
}
func f(start, stop, a, deltax float64, ch chan float64) {
result := 0.0
for i := start; i < stop; i++ {
result += math.Sqrt(a + deltax*(i+0.5))
}
ch <- result
}

TA貢獻1995條經驗 獲得超2個贊
除非 goroutine 中的活動花費的時間比切換上下文、執行任務和使用互斥鎖更新值所需的時間多得多,否則串行執行會更快。
看一個稍微修改過的版本。我所做的只是在f()函數中添加 1 微秒的延遲。
package main
import (
"fmt"
"math"
"sync"
"time"
)
type Result struct {
result float64
lock sync.RWMutex
}
var wg sync.WaitGroup
var result Result
func main() {
fmt.Println("concurrent")
concurrent()
result.result = 0
fmt.Println("serial")
serial()
}
func concurrent() {
now := time.Now()
a := 0.0
b := 1.0
n := 100000.0
deltax := (b - a) / n
wg.Add(int(n))
for i := 0.0; i < n; i++ {
go f(a, deltax, i, true)
}
wg.Wait()
fmt.Println(deltax * result.result)
fmt.Println(time.Now().Sub(now))
}
func serial() {
now := time.Now()
a := 0.0
b := 1.0
n := 100000.0
deltax := (b - a) / n
for i := 0.0; i < n; i++ {
f(a, deltax, i, false)
}
fmt.Println(deltax * result.result)
fmt.Println(time.Now().Sub(now))
}
func f(a, deltax, i float64, concurrent bool) {
time.Sleep(1 * time.Microsecond)
fx := math.Sqrt(a + deltax*(i+0.5))
if concurrent {
result.lock.Lock()
result.result += fx
result.lock.Unlock()
wg.Done()
} else {
result.result += fx
}
}
加上延遲,結果如下(并發版本快很多):
concurrent
0.6666666685900424
624.914165ms
serial
0.6666666685900422
5.609195767s
事不宜遲:
concurrent
0.6666666685900428
50.771275ms
serial
0.6666666685900422
749.166μs
正如你所看到的,完成一項任務所花費的時間越長,如果可能的話,同時執行它就越有意義。
- 2 回答
- 0 關注
- 176 瀏覽
添加回答
舉報