我試圖實現一個神經網絡來解決分類問題,但是我的程序: _, c = sess.run([train_op, loss_op], feed_dict={X: x_train,Y: y_train})我試圖重塑數據并嘗試了堆棧中給出的許多解決方案來解決我的問題,但對我不起作用,我想知道我該怎么辦?最重要的部分:...n_output = 8n_input = 9 # Max number of input that may have features of one single program################################ Dfine data ####################################from google.colab import filesimport iouploaded = files.upload()x_train_ = pd.read_csv(io.StringIO(uploaded['x_train.csv'].decode('utf-8')), skiprows=1, header=None)uploaded1 = files.upload()y_train_ = pd.read_csv(io.StringIO(uploaded1['y_train.csv'].decode('utf-8')), skiprows=1, header=None)x_train.fillna(-1, inplace=True)x_train = np.array(x_train)y_train = np.array(y_train)################################ Input, weights, biases ######################### tf Graph inputX = tf.placeholder(shape=[None, n_input], dtype=tf.float32)Y = tf.placeholder(shape=[None, n_output], dtype=tf.float32).....################################ Construct model ###############################logits = multilayer_perceptron(X)# Define loss and optimizerloss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y))optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)train_op = optimizer.minimize(loss_op)...# Initializing the variablesinit = tf.global_variables_initializer()with tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. _, c = sess.run([train_op, loss_op], feed_dict={X: x_train,Y: y_train}) ... print("Optimization Finished!")編輯:一旦我打印出來:print(y_train_.head()) 它給出: 00 21 42 83 164 32
2 回答

翻閱古今
TA貢獻1780條經驗 獲得超5個贊
Y = tf.placeholder(shape=[None, n_output], dtype=tf.float32)
所以你的 Y 占位符的形狀是 [m, 8]。顯然 y_train 構造不正確,請嘗試使用 y_train.values() 而不是 np.array(y_train)。

拉丁的傳說
TA貢獻1789條經驗 獲得超8個贊
我后來意識到,因為我的 y_train csv 文件只包含一列,所以我必須像這樣聲明它
Y = tf.placeholder(shape=[None,1], dtype=tf.float32)
我不應該混淆類的數量和如何聲明“Y”。
所以就像他說品雪一樣,如果我這樣聲明 Y:
Y = tf.placeholder(shape=[None, n_output], dtype=tf.float32)
我的 Y 占位符的形狀是 [m, 8] 而不是 [m,1]。所以我不得不像我在上面的解決方案中提到的那樣聲明它來修復它。
添加回答
舉報
0/150
提交
取消