2 回答

TA貢獻1865條經驗 獲得超7個贊
這將起作用:
import pandas as pd
df = pd.DataFrame( {"A":[0., 100., 40., 60.], "B":[12, 12, 19, 19]} )
def f(series):
return (series + 0.5).where(series == 0, series - 0.5)
B_value = df.loc[df['A'] == 0, 'B'][0]
df.loc[df['B'] == B_value, 'A'] = df.loc[df['B'] == B_value, 'A'].transform(f)
print(df)
輸出:
A B
0 0.5 12
1 99.5 12
2 40.0 19
3 60.0 19
您可以將任意函數傳遞到transform.
可能有一種更簡潔的方法來做到這一點;它讓我覺得有點凌亂。

TA貢獻1951條經驗 獲得超3個贊
我找到了一個可行的解決方案,盡管可能不是最優的。我鏈接groupby,過濾和轉換以獲得所需的系列,然后替換原始數據幀中的結果。
import pandas as pd
df = pd.DataFrame( {"A":[0., 100., 80., 40., 0., 60.],
"B":[12, 12, 3, 19, 3, 19]} )
u = ( df.groupby(by="B", sort=False)
.filter(lambda x: x.A.min() == 0, dropna=False)
.A.transform( lambda x: (x+0.5).where(x == 0, x - 0.5) )
)
df.loc[pd.notnull(u), "A"] = u
給出以下結果
print("\ninitial df\n",df,"\n\nintermediate series\n",u,"\n\nfinal result",df)
initial df
A B
0 0.0 12
1 100.0 12
2 80.0 3
3 40.0 19
4 0.0 3
5 60.0 19
intermediate series
0 0.5
1 99.5
2 79.5
3 NaN
4 0.5
5 NaN
Name: A, dtype: float64
final result A B
0 0.5 12
1 99.5 12
2 79.5 3
3 40.0 19
4 0.5 3
5 60.0 19
添加回答
舉報