我有一個干凈的數據集,其 nan 值為零,但我繼續在回歸器上遇到相同的錯誤。我的框架叫做 new_player_data我試過找到任何list(new_player_data.where(new_player_data.isna()).count() > 0)返回[假,假,假,假,假,假]大約兩百次。我認為可能有一些太大的浮動。我試過這個:for i in new_player_data.columns[:]: if new_player_data[i].dtype == float: new_player_data[i] = round(new_player_data[i],2)無論我得到什么:regressor.fit(X_train, y_train) ---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-327-3a664017ddaa> in <module>----> 1 regressor.fit(X_train, y_train)/anaconda3/lib/python3.7/site-packages/sklearn/ensemble/forest.py in fit(self, X, y, sample_weight) 248 249 # Validate or convert input data--> 250 X = check_array(X, accept_sparse="csc", dtype=DTYPE) 251 y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) 252 if sample_weight is not None:/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) 571 if force_all_finite: 572 _assert_all_finite(array,--> 573 allow_nan=force_all_finite == 'allow-nan') 574 575 shape_repr = _shape_repr(array.shape)/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in _assert_all_finite(X, allow_nan) 54 not allow_nan and not np.isfinite(X).all()): 55 type_err = 'infinity' if allow_nan else 'NaN, infinity'---> 56 raise ValueError(msg_err.format(type_err, X.dtype)) 57 58 ValueError: Input contains NaN, infinity or a value too large for dtype('float32').關于我還可以在這里檢查什么的任何想法?虧本
盡管已刪除,但 Python 隨機森林回歸器仍對 nan 值出錯
慕尼黑5688855
2021-12-17 14:47:33