我試圖將幾個lpSum表達式連接到一個長表達式,這將是我的目標函數。然而,我以優雅的方式合并這些表達式的嘗試導致了不希望的結果。我想要這樣的東西:a = pulp.lpSum(...)b = pulp.lpSum(...)c = pulp.lpSum(...)prob += a + b - c對我的代碼更具體: alloc_prob = pulp.LpProblem("Supplier Allocation Problem", pulp.LpMinimize) TPC_func = pulp.lpSum(X[s][p]*procCosts[s][p] for s in supplier for p in project), "Total Procurement Costs" TTC_func = pulp.lpSum(X[s][p]*transCosts[s][p] for s in supplier for p in project), "Total Transportation Costs (incl. taxes/duties)" TD_func = pulp.lpSum(X_SEP[c][1]*discountFactor['Bonus / ton [€/t]'][c] for c in company), "Total Discounts"` # Objective function: TPC + TTC - TD -> min alloc_prob += TPC_func + TTC_func - TD_func我已經嘗試過不同的嵌套方法,例如: prob += [pulp.lpSum(X[s][p]*procCosts[s][p] + X[s][p]*transCosts[s][p] for s in supplier for p in project) - pulp.lpSum(X_SEP[c][1]*discountFactor['Bonus / ton [€/t]'][c] for c in company)]輸出做它應該做的。然而,這既不是一個很好的代碼,也不能分配給目標函數。有沒有聰明的實施方式?
1 回答

楊__羊羊
TA貢獻1943條經驗 獲得超7個贊
沒有看到錯誤,我可以 100% 確定,但我認為您在 lpsum 中包含的名稱導致了問題,請嘗試以下操作
alloc_prob = pulp.LpProblem("Supplier Allocation Problem", pulp.LpMinimize)
TPC_func = pulp.lpSum(X[s][p]*procCosts[s][p] for s in supplier for p in
project)
TTC_func = pulp.lpSum(X[s][p]*transCosts[s][p] for s in supplier for p in
project)
TD_func = pulp.lpSum(X_SEP[c][1]*discountFactor['Bonus / ton [€/t]'][c] for
c in company)
# Objective function: TPC + TTC - TD -> min
alloc_prob += TPC_func + TTC_func - TD_func
添加回答
舉報
提交
取消