在 jupyter notebook 中,我對資源進行 OO 建模,但在控制循環中需要聚合多個對象的數據,與 ufunc 和類似操作相比效率低下。為了打包功能,我選擇了面向對象,但為了高效簡潔的代碼,我可能必須將數據提取到存儲類中(可能)并將所有 ri[0] 行推送到二維數組中,在本例中為 (2,K)。該類不需要日志,只需要最后一個條目。K = 100class Resource: def __init__(self): self.log = np.random( (5,K) ) # log gets filled during simulationr0 = Resource()r1 = Resource()# while control loop: #aggregate control data for k in K: total_row_0 = r0.log[0][k] + r1.log[0][k] #do sth with the totals and loop again這將大大提高性能,但如果單獨存儲,我很難將數據鏈接到類。你會如何處理這個問題?pandas DataFrames、np View 還是淺拷貝?[[...] #r0 [...] ]#r1 same data into one array, efficient but map back to class difficult
1 回答

海綿寶寶撒
TA貢獻1809條經驗 獲得超8個贊
這是我的看法:
import numpy as np
K = 3
class Res:
logs = 2
def __init__(self):
self.log = None
def set_log(self, view):
self.log = view
batteries = [Res(), Res()]
d = {'Res': np.random.random( (Res.logs * len(batteries), K) )}
for i in range(len(batteries)):
view = d['Res'].view()[i::len(batteries)][:]
batteries[i].set_log(view)
print(d)
batteries[1].log[1][2] = 1#test modifies view of last entry of second Res of second log
print(d)
添加回答
舉報
0/150
提交
取消