亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定
已解決430363個問題,去搜搜看,總會有你想問的

保存并繼續訓練 LSTM 網絡

保存并繼續訓練 LSTM 網絡

RISEBY 2021-08-24 16:30:21
我試圖讓 LSTM 模型繼續運行,因為它的最后一次運行停止了。在我嘗試適應網絡之前,一切都可以正常編譯。然后它給出一個錯誤:ValueError:檢查目標時出錯:預期dense_29具有3維,但得到形狀為(672, 1)的數組我檢查了諸如this和this之類的各種文章, 但我沒有看到我的代碼有什么問題。from keras import Sequentialfrom keras.preprocessing.sequence import pad_sequencesfrom sklearn.model_selection import train_test_splitfrom keras.models import Sequential,Modelfrom keras.layers import LSTM, Dense, Bidirectional, Input,Dropout,BatchNormalizationfrom keras import backend as Kfrom keras.engine.topology import Layerfrom keras import initializers, regularizers, constraintsfrom keras.callbacks import ModelCheckpointfrom keras.models import load_modelimport os.pathimport osfilepath="Train-weights.best.hdf5"act = 'relu'model = Sequential()model.add(BatchNormalization(input_shape=(10, 128)))model.add(Bidirectional(LSTM(128, dropout=0.5, activation=act, return_sequences=True)))model.add(Dense(1,activation='sigmoid'))if (os.path.exists(filepath)):   print("extending training of previous run")   model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])   with open('model_architecture.json', 'r') as f:      model = model_from_json(f.read())   model.load_weights(filepath)else:   print("First run")         model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])   model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=100, batch_size=32, callbacks=callbacks_list, verbose=2)   model.save_weights(filepath)   with open('model_architecture.json', 'w') as f:       f.write(model.to_json()) checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=100, batch_size=32, callbacks=callbacks_list, verbose=0)
查看完整描述

1 回答

?
holdtom

TA貢獻1805條經驗 獲得超10個贊

嘗試一下model.summary(),您會看到網絡中最后一層(即 Dense 層)的輸出形狀是(None, 10, 1)。因此,您提供給模型的標簽(即y_train)也必須具有 形狀(num_samples, 10, 1)。

如果輸出形狀(None, 10, 1)不是您想要的(例如,您想要(None, 1)作為模型的輸出形狀),那么您需要修改您的模型定義。實現這一目標的一個簡單修改是return_sequences=True從 LSTM 層中刪除參數。


查看完整回答
反對 回復 2021-08-24
  • 1 回答
  • 0 關注
  • 390 瀏覽
慕課專欄
更多

添加回答

舉報

0/150
提交
取消
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號