1 回答

TA貢獻1875條經驗 獲得超3個贊
一種替代方法是使用該Permute層(并刪除channels_first第二個 conv 層的 ):
model = Sequential()
model.add(Convolution1D(filters=16, kernel_size=35, activation='relu', input_shape=(1, 100), data_format='channels_first'))
model.add(Permute((2, 1)))
model.add(MaxPooling1D(pool_size=5))
model.add(Convolution1D(filters=16, kernel_size=10, activation='relu'))
model.summary()
型號概要:
Layer (type) Output Shape Param #
=================================================================
conv1d_7 (Conv1D) (None, 16, 66) 576
_________________________________________________________________
permute_1 (Permute) (None, 66, 16) 0
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 13, 16) 0
_________________________________________________________________
conv1d_8 (Conv1D) (None, 4, 16) 2096
=================================================================
Total params: 2,672
Trainable params: 2,672
Non-trainable params: 0
_________________________________________________________________
添加回答
舉報