如何在不重建的情況下將ATLAS / MKL鏈接到現有的Numpy。我使用Numpy來計算大型矩陣,但發現它非常慢,因為Numpy僅使用1個核來進行計算。經過大量搜索后,我發現我的Numpy沒有鏈接到某些優化的庫,例如ATLAS / MKL。這是我的numpy配置:>>>import numpy as np>>>np.__config__.show()blas_info: libraries = ['blas'] library_dirs = ['/usr/lib'] language = f77lapack_info: libraries = ['lapack'] library_dirs = ['/usr/lib'] language = f77atlas_threads_info: NOT AVAILABLEblas_opt_info: libraries = ['blas'] library_dirs = ['/usr/lib'] language = f77 define_macros = [('NO_ATLAS_INFO', 1)]atlas_blas_threads_info: NOT AVAILABLEopenblas_info: NOT AVAILABLElapack_opt_info: libraries = ['lapack', 'blas'] library_dirs = ['/usr/lib'] language = f77 define_macros = [('NO_ATLAS_INFO', 1)]atlas_info: NOT AVAILABLElapack_mkl_info: NOT AVAILABLEblas_mkl_info: NOT AVAILABLEatlas_blas_info: NOT AVAILABLEmkl_info: NOT AVAILABLE因此,我想將ATLAS / MKL鏈接到Numpy。但是,我的Numpy是通過PIP安裝的,所以我不想手動安裝,因為我想使用最新版本。我已經做了一些搜索,但它們僅用于從頭開始構建。因此,我的問題是:有什么方法可以將ATLAS / MKL鏈接到Numpy,而無需重新構建?我發現配置信息保存在Numpy安裝文件夾的_ config _.py中。那么修改它可以解決我的問題嗎?如果是,請告訴我如何?
添加回答
舉報
0/150
提交
取消