初始化
ThreadPoolExecutor重载了多个构造方法,不过最终都是调用的同一个:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) { if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.acc = System.getSecurityManager() == null ? null :
AccessController.getContext(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler;
}其中涉及了7个参数:
corePoolSize:线程池维护的线程数,及时线程空闲也不关闭,除非设置了
allowCoreThreadTimeOut(默认未设置)maximumPoolSize:最大线程数,当需要的线程数超过corePoolSize时就会新建线程,但线程总数不会超过maximumPoolSize
keepAliveTime:超出corePoolSize的线程,在用完后空闲时间超过keepAliveTime的时间后就会终止(terminating)
TimeUnit unit:keepAliveTime的时间单位
BlockingQueue<Runnable> workQueue:当任务无法立即被执行时,会被存储在队列中。不同类型的队列会导致线程池不同的特性,这里不深入讨论(有兴趣可以查看: 队列为 直接提交队列SynchronousQueue,无界队列LinkedBlockingQueue,有界队列ArrayBlockingQueue时不同的特性,参考)ThreadFactory threadFactory:创建线程的工厂, 如常见的指定线程名字的工厂方法:
new ThreadFactoryBuilder().setNameFormat("Thread-pool-%d").build();RejectedExecutionHandler handler:拒绝策略,当线程数达到maximumPoolSize,且workQueue已经无法存储更多任务时,采用拒绝策略。
ThreadPoolExecutor为我们提供了4种拒绝策略:
AbortPolicy,默认策略,抛出异常RejectedExecutionException,告诉调用方已经来不及处理了,调用方需要处理异常和线程线程池来不及执行的任务DiscardPolicy,静默的忽略掉,无一致性要求的可以这么干DiscardOldestPolicy,从队列里抛弃掉最老的任务,无一致性要求的可以这么干CallerRunsPolicy,当任务添加到线程池中被拒绝时,会在线程池当前正在运行的Thread线程中处理被拒绝的任务。可以一定程度缓解当前线程不够的情况,但是如果当前任务执行所需时间不定,有卡住主线程的风险
再看看CallerRunsPolicy的实现:
public static class CallerRunsPolicy implements RejectedExecutionHandler { /**
* Creates a {@code CallerRunsPolicy}.
*/
public CallerRunsPolicy() { } /**
* Executes task r in the caller's thread, unless the executor
* has been shut down, in which case the task is discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { if (!e.isShutdown()) {
r.run();
}
}
}可见是通过执行r.run()来占用主线程执行的。
所有的拒绝策略都是继承RejectedExecutionHandler,所以我们也可以自定义拒绝策略。
ctl变量
ctl变量是ThreadPoolExecutor的一个属性,ctl可以理解为control的简写,源码中定义如下:
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
源码中ctl变量的注释中解释了该变量的含义,该变量包含了两个含义,线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)。 ctl用高3位来表示线程池的运行状态, 用低29位来表示线程池内有效线程的数量。在源码中,rs通常表示线程池运行状态 , wc通常表示线程池中有效线程数量, 另外, ctl 也通常会简写作 c。
再看与ctl相关的几个变量和方法:
private static final int COUNT_BITS = Integer.SIZE - 3; private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS; // Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; } private static int workerCountOf(int c) { return c & CAPACITY; } private static int ctlOf(int rs, int wc) { return rs | wc; }COUNT_BITS,表示用于标记线程数量的位数,32-3=29位
CAPACITY, 表示线程池最大可以容纳的线程数量,2^30-1
RUNNING,表示运行状态,-1 << COUNT_BITS,前三位的值为
111,后29位为0SHUTDOWN,表示不接受新的任务,但是可以处理阻塞队列里的任务。0<< COUNT_BITS,前三位的值为
000,后29位为0。调用shutdown()方法会置为该状态。STOP,该状态不接受新的任务,不处理阻塞队列里的任务,中断正在处理的任务。1<< COUNT_BITS,前三位的值为
001,后29位为0。调用shutdownNow()方法会置为该状态TIDYING,表示过渡状态,2<< COUNT_BITS,前三位的值为
010,后29位为0。此时表示所有的任务都执行完了,当前线程池已经没有有效的线程,并且将要调用terminated方法TERMINATED,表示终止状态,3<< COUNT_BITS,前三位的值为
011,后29位为0runStateOf(int c) ,获取线程池状态,这里
c为ctl变量,CAPACITY取反结果是前三位为1,后29位为0,与ctl与操作即可得到状态workerCountOf(int c), 与runStateOf(int c) 相反取后29位,即线程数量
ctlOf(int rs, int wc),基于状态和线程数量构造一个ctl变量
对于状态可以简单理解为:RUNNING为-1,SHUTDOWN为0,STOP为1,TIDYING为2,TERMINATED为3。RUNNING变为SHUTDOWN或者STOP后,再变为TIDYING,再变为TERMINATED。
添加任务
ThreadPoolExecutor继承于AbstractExecutorService:
public class ThreadPoolExecutor extends AbstractExecutorService
AbstractExecutorService提供了最常用的三个添加任务到线程成的方法:
public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask); return ftask;
}public <T> Future<T> submit(Runnable task, T result) { if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
execute(ftask); return ftask;
}public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask); return ftask;
}可以看到最终它们都是调用了execute方法,ThreadPoolExecutor中execute的实现如下:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return;
c = ctl.get();
} if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command))
reject(command); else if (workerCountOf(recheck) == 0)
addWorker(null, false);
} else if (!addWorker(command, false))
reject(command);
}源码中的这段注释详细的介绍了这段代码的作用,该方法考虑三种情况:
如果当前存活thread的数量小于corePoolSize,则尝试开启一个新的线程。如果创建成功则返回;如果创建失败,则继续后续步骤;
如果
步骤1中创建失败或者thread数量>=corePoolSize,那会进入该步骤。该步骤判断线程池处于运行状态,则尝试将新任务加入队列。如果线程池处于运行状态,且加入队列成功,则再次判断线程池是否处于运行状态(防止在执行
workQueue.offer(command)的时候线程池状态改变)。如果线程池状态改变则remove刚刚入队的任务,并执行拒绝操作。如果在运行态,但是线程数为0,则添加一个worker。如果
线程池不处于运行状态或加入队列失败则进入下一步骤
如果
线程池不处于运行状态或者处于运行状态,但是thread数量>=corePoolSize且workQueue已满,则会进入该步骤。该步骤会尝试创建一个新的线程来执行任务。如果线程池线程总数达到maximumPoolSize 或者 创建线程时线程池状态变化不再处于运行状态,则会创建失败。
在上面的代码中主要是通过addWorker方法添加新任务的,下面我们就来分析下这个方法的实现
addWorker方法
源码如下:
private boolean addWorker(Runnable firstTask, boolean core) {
retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary.
//rs >= SHUTDOWN,状态不为RUNNING
//并且
//rs != SHUTDOWN || firstTask != null || workQueue.isEmpty()
//一下几种情况
//1. 状态不为RUNNING和SHUTDOWN,
//2. 或者 状态为SHUTDOWN且task不为null,
//3. 或者 状态为SHUTDOWN, task为null, workQueue 为空,
//则返回false,添加失败
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty())) return false; //判断是否超过线程数量的限制,
for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize)) return false; //未超过限制则尝试把线程数加1,成功跳出retry循环
if (compareAndIncrementWorkerCount(c)) break retry; //线程数加1失败则说明ctl有变化(状态或数量), 重新获取
c = ctl.get(); // Re-read ctl
//如果是状态变化则循环外层,反之循环内层
if (runStateOf(c) != rs)
continue retry; // else CAS failed due to workerCount change; retry inner loop
}
} boolean workerStarted = false; boolean workerAdded = false;
Worker w = null; try {
w = new Worker(firstTask); //从Worker构造方法可以看到
//this.firstTask = firstTask;
//this.thread = getThreadFactory().newThread(this);
//故此firstTask为null的时候, w.thread不为null
final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock;
mainLock.lock(); try { // Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w); int s = workers.size(); if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
} if (workerAdded) {
t.start(); //成功添加worker后,启动线程
workerStarted = true;
}
} //end of if (t != null)
} finally { //worker启动失败则移除worker, 数量减一
if (! workerStarted)
addWorkerFailed(w);
} return workerStarted;
}在execute方法中在三个地方用不用的参数调用了addWorker方法:
addWorker(command, true)
addWorker(null, false)
addWorker(command, false)
addWorker有两个参数:Runnable firstTask和 boolean core,前者表示要执行的任务,后者表示线程数量限制的类型(基于corePoolSize还是maximumPoolSize)。1和3 是类似的,唯一的不同就是线程数的限制不同,所以这里主要分析firstTask为null 和 不为null 的区别。
方法中retry: for (;;) {...}的内容主要是用于判断是否线程池已经关闭,以及线程数量是否超过限制。若未关闭,未超过限制则把线程数加1。firstTask为null的时候, w.thread不为null,所以firstTask是否在addWorker中还是没有区别,那只能更进一步看看worker里对firstTask是如何处理的。
worker实现
线程池中的任务都是通过worker来代理的。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable{
/** Thread this worker is running in. Null if factory fails. */
final Thread thread; /** Initial task to run. Possibly null. */
Runnable firstTask; /** Per-thread task counter */
volatile long completedTasks;
//后续代码此处省略...........................}Worker继承与AQS,实现Runable接口,本身是线程类,且具有AQS的特性。
看worker构造方法:
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask; //Worker实现了Runnable所以,
//所以this.thread.start(),就是用线程执行worker的run方法
this.thread = getThreadFactory().newThread(this);
}setState(-1)为AQS的方法,把状态位设置成-1,这样任何线程都不能得到Worker的锁,除非调用了unlock方法。这个unlock方法会在runWorker方法中一开始就调用,这是为了确保Worker构造出来之后,没有任何线程能够得到它的锁,除非调用了runWorker之后,其他线程才能获得Worker的锁。
再看其run方法:
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}runWorker(this)不是worker的方法,是ThreadPoolExecutor的方法,也是执行任务的方法。
执行任务
又回到了ThreadPoolExecutor中,runWorker实现如下:
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts,创建worker时状态设置为-1了,此时设置为1
boolean completedAbruptly = true; //task是否意外终止,意外终止为true,反之false
try { //优先运行初始化时的firstTask, 如果firstTask已经执行了则从队列取
while (task != null || (task = getTask()) != null) {
w.lock(); //获取到task后锁定,独占worker,保证线程安全
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt(); try {
beforeExecute(wt, task); //空方法,用于子类扩展
Throwable thrown = null; try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);//空方法,用于子类扩展
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally { //移除执行完成的worker
processWorkerExit(w, completedAbruptly);
}
}到此我们终于能回答前面的问题了,addWorker(Runnable firstTask, boolean core) 中firstTask为null不不为null的区别:
为null,
addWorker(null, core)表示创建一个worker,执行队列中的task不为null,
addWorker(firstTask, core)表示创建一个worker,先执行firstTask,再执行队列中的task他们都新增了一个线程,一个是直接执行队列里的任务,一个先执行当前任务,再执行队列任务。
下面继续分析runWorker。
线程池在runWorker方法中,通过while (task != null || (task = getTask()) != null)不断从队列中取出任务执行,等待队列中任务执行完成后,调用processWorkerExit(w, completedAbruptly),移除当前worker。问题来了,这么看起来线程池中的线程只有在队列不为空的时候才得以复用,这不科学啊,那问题在哪儿?反复看代码,唯一忽略的掉的地方就是getTask()了,看到这个方法的时候,想当然的认为是简单的获取队列中的任务,那么我们来看一下它的具体实现:
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out?
for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. 线程池是否已经关闭
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount(); return null;
} int wc = workerCountOf(c); // Are workers subject to culling?
//表示worker是否需要回收
//allowCoreThreadTimeOut=true时core线程超时也回收, 默认为false
//所以默认情况下timed表示 wc > corePoolSize
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue;
} try {
Runnable r = timed ? //线程需要回收;尝试取队列中的任务,超过keepAliveTime还未取到返回null
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : //线程无需回收;取队列中的任务, 队列中没有任务则一直等到有任务
workQueue.take(); if (r != null) return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}上面代码可以看出getTask()确实是取任务,不过也兼任了 线程池在运行态取不到数据时 park线程 或 等待线程直到超时(parkNanos) 的工作,我们查看线程无需回收时park在取队列任务的线程堆栈如下:
"pool-1-thread-1@731" prio=5 tid=0xd nid=NA waiting java.lang.Thread.State: WAITING at sun.misc.Unsafe.park(Unsafe.java:-1) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175) at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2039) at java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:403) at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1074) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1134) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
线程处于waiting状态,从堆栈中可以看到at java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:403),正是被workQueue.take() park住了。如此一来worker执行完当前线程之后,如果取不到新的任务就会一直处在park状态,直到队列中有新的任务进入。以ArrayBlockingQueue为例看,看其take 和 enqueue实现:
/** Condition for waiting takes */
private final Condition notEmpty;public E take() throws InterruptedException { final ReentrantLock lock = this.lock;
lock.lockInterruptibly(); try { while (count == 0)
notEmpty.await(); //park 线程
return dequeue();
} finally {
lock.unlock();
}
}private void enqueue(E x) { // assert lock.getHoldCount() == 1;
// assert items[putIndex] == null;
final Object[] items = this.items;
items[putIndex] = x; if (++putIndex == items.length)
putIndex = 0;
count++;
notEmpty.signal(); //唤起线程
}关闭连接池
ThreadPoolExecutor提供了两个关闭的方法:
shutdown(),关闭线程池,不再接受新的任务,但是会处理完当前线程和队列中的线程shutdownNow(),关闭线程池,不再接受新的任务,且试图停止所有正在执行的线程,并不再处理还在池队列中等待的任务。但是它试图终止线程的方法是通过调用Thread.interrupt()方法来实现的,但是interrupt的作用有限,运行中的线程不一定能成功退出(具体原因参考)。
下面看下实现:
public void shutdown() { final ReentrantLock mainLock = this.mainLock;
mainLock.lock(); try {
checkShutdownAccess();
advanceRunState(SHUTDOWN); //状态设置为SHUTDOWN
interruptIdleWorkers(); //中断空闲线程
onShutdown(); // hook for ScheduledThreadPoolExecutor,这里为空方法
} finally {
mainLock.unlock();
}
tryTerminate();
}
public List<Runnable> shutdownNow() {
List<Runnable> tasks; final ReentrantLock mainLock = this.mainLock;
mainLock.lock(); try {
checkShutdownAccess();
advanceRunState(STOP); //状态设置为STOP
interruptWorkers(); //中断全部线程
tasks = drainQueue(); //返回队列中未执行的任务
} finally {
mainLock.unlock();
}
tryTerminate(); return tasks;
}可以看到shutdown和shutdownNow的实现大致相同,不同的地方有两个,
前者关闭时将状态设置为
SHUTDOWN,后者为STOP前者
interruptIdleWorkers(),只中断空闲线程;后者interruptWorkers(),中断全部 线程,返回队列中未执行的任务
设置状态的源码:
private void advanceRunState(int targetState) { for (;;) { int c = ctl.get(); if (runStateAtLeast(c, targetState) ||
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c)))) break;
}
}interruptIdleWorkers():
private void interruptIdleWorkers() {
interruptIdleWorkers(false);
}private void interruptIdleWorkers(boolean onlyOne) { final ReentrantLock mainLock = this.mainLock;
mainLock.lock(); try { for (Worker w : workers) {
Thread t = w.thread; //如果线程未被中断,且获取work的锁成功(说明空闲),则中断线程
if (!t.isInterrupted() && w.tryLock()) { try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
} if (onlyOne) break;
}
} finally {
mainLock.unlock();
}
}interruptWorkers():
//ThreadPoolExecutorprivate void interruptWorkers() { final ReentrantLock mainLock = this.mainLock;
mainLock.lock(); try { //中断全部worker线程
for (Worker w : workers)
w.interruptIfStarted();
} finally {
mainLock.unlock();
}
}//workervoid interruptIfStarted() {
Thread t; //若worker已经启动(未启动时为-1),且thread不为null,且未被中断
//也就是说线程还存活着,那就发送中断信号
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}tryTerminate()除了在关闭连接池时调用,还在其它地方调用了,这里只分析在关闭连接池时它都做了什么:
final void tryTerminate() { for (;;) { int c = ctl.get(); //关闭连接池调用该方法第一次调用时:
//状态为SHUTDOWN或STOP,都小于TIDYING,故前两条件都不满足
//第三个条件,队列不为空的时候直接返回了,
//如果为shutdown()则可能队列不为空,可能满足条件直接返回,也可能不满足
//如果为shutdownNow()则队列被清空,不满足
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; //如果worker数量不为0则执行interruptIdleWorkers(true)
//然后直接返回,完成该方法
if (workerCountOf(c) != 0) { // Eligible to terminate
interruptIdleWorkers(ONLY_ONE); return;
} final ReentrantLock mainLock = this.mainLock;
mainLock.lock(); try { //尝试设置状态为TIDYING,worker数量为0,
//期间ctl若未变动,则成功
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { try {
terminated(); //空方法用于子类扩展
} finally { //设置状态为TERMINATED
ctl.set(ctlOf(TERMINATED, 0)); //唤醒调用了awaitTermination(long timeout, TimeUnit unit)的线程
//awaitTermination中调用了
termination.signalAll();
} return;
}
} finally {
mainLock.unlock();
} // else retry on failed CAS
}
}tryTerminate()在关闭连接池时的做的判断可以简单理解为
如果队列不为空直接返回
存活worker数量不为0则直接返回
设置状态为TIDYING,TERMINATED
所以无论是shutdown还是shutdownNow都不会阻塞线程,且不保证worker已经全部关闭。
参考
Java线程池ThreadPoolExecutor源码分析
csdn-Java 线程池 ThreadPoolExecutor 源码分析
详细分析Java中断机制
谈谈 Java 线程状态相关的几个方法
作者:苍枫露雨
出处:https://www.cnblogs.com/chrischennx/p/9600156.html
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
共同學習,寫下你的評論
評論加載中...
作者其他優質文章