tensorflow多层神经网络学习-实现mnist数字识别
Mnsit数字识别是机器学习的入门学习任务,因为最近在学习tensorflow,本着more practice的原则,用tensorflow也手写一次。
用tensorflow实现其实非常简单,包含下面几个步骤
因为是监督学习,所以要定义输入和输出,在这里输入是mnist数字集的图片特征,输出是具体0-9数字中的一个,所以输出是10个
定义参数,一般是指weights和bias,这里定义了二层全链接的参数,一般定义时就给定初始值了
定义代价函数,对于概率问题,一般会交叉熵损失函数-p(x)logq(x)
优化方法,一般是梯度下降
其实这个代码损失函数写了三种,一种求均值熵,一种是求和熵,还有均方差,其实均方差也可以的,只不过,可能得不到全局最小值,因为均方差函数的图像可能是一个振荡的波形,不过在这里是可以收敛的,要给定大的学习率,才能达到另外2个的收敛速度。
下面给出具体代码
from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tf# define Parameterlearning_rate = 0.01train_step = 20000batch_size = 100input_node = 28 * 28output_node = 10layer1_node = 500def train(mnist): x = tf.placeholder(tf.float32, shape=[None, input_node], name="x-input") y_ = tf.placeholder( tf.float32, shape=[None, output_node], name='label-input') # define variable w1 = tf.Variable(tf.truncated_normal( [input_node, layer1_node], stddev=0.1, dtype=tf.float32)) b1 = tf.Variable(tf.constant(0, dtype=tf.float32, shape=[layer1_node])) w2 = tf.Variable( tf.truncated_normal([layer1_node, output_node], stddev=0.1, dtype=tf.float32)) b2 = tf.Variable(tf.constant(0, dtype=tf.float32, shape=[output_node])) layer1 = tf.nn.relu(tf.matmul(x, w1) + b1) y = tf.matmul(layer1, w2) + b2 # define optimizie and loss function cross_entropy = - y_ * \ tf.log(tf.clip_by_value(tf.nn.softmax(y), 1e-10, 1.0))# cross_entropy = tf.nn.softmax_cross_entropy_with_logits(# labels=y_, logits=y)# # loss = tf.reduce_sum(cross_entropy)# loss = tf.reduce_mean(tf.square(y - y_)) global_step = tf.Variable(0, trainable=False) train_op = tf.train.GradientDescentOptimizer( learning_rate).minimize(loss, global_step=global_step) correct_predict = tf.equal(tf.argmax(y_, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_predict, tf.float32)) with tf.Session() as session: session.run(tf.global_variables_initializer()) validate_feed = { x: mnist.validation.images, y_: mnist.validation.labels} test_feed = {x: mnist.test.images, y_: mnist.test.labels} for i in range(train_step): if i % 100 == 0: validate_acc = session.run(accuracy, feed_dict=validate_feed) print("After %d training step(s), validation accuracy using sum model is %g " % ( i, validate_acc)) xs, ys = mnist.train.next_batch(batch_size) session.run(train_op, feed_dict={x: xs, y_: ys}) test_acc = session.run(accuracy, feed_dict=test_feed) print("After %d training step(s), test accuracy using sum model is %g" % ( train_step, test_acc))def main(argv=None): mnist = input_data.read_data_sets("D:/download/minst", one_hot=True) train(mnist)if __name__ == '__main__': tf.app.run()
作者:xcrossed
链接:https://www.jianshu.com/p/d1acf1ff282b
點擊查看更多內容
為 TA 點贊
評論
評論
共同學習,寫下你的評論
評論加載中...
作者其他優質文章
正在加載中
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦