亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

使用R完成邏輯斯蒂回歸分類 直接上代碼,如下:

標簽:
大數據

data_sample <- iris[51:150,];
m <- dim(data_sample)[1]  #获取数据集记录条数
val <- sample(m, size =round(m/3), replace = FALSE, prob= rep(1/m, m))  #抽样,选取三分之二的数据作为训练集。 
iris.learn <- data_sample[-val,]  #选取训练集 
iris.valid <- data_sample[val,]   #选取验证集

#调用glm函数训练逻辑斯蒂二元模型
#glm()提供正态、指数、gamma、逆高斯、Poisson、二项分布。我们的logistic回归使用的是二项分布族binomial。Binomial族默认连接函数为logit,可设置为probit。
logit.fit <- glm(Species~Petal.Width+Petal.Length,
 family = binomial(link = 'logit'),
 data = iris.learn);

#生成测试数据集,实际上直接使用iris.valid
dfrm <- data.frame(Petal.Width=iris.valid$Petal.Width,
 Petal.Length=iris.valid$Petal.Length);

real_sort <- iris.valid$Species;  #测试数据集实际类别

prdict_res <- predict(logit.fit, type="response", newdata=dfrm);  #预测数据产生概率
data.frame(predict=prdict_res, real=real_sort);  #查看数据产生概率和实际分类的关系
data.frame(predict=ifelse(prdict_res>0.5, "virginica", "versicolor"), real=real_sort);  #根据数据产生概率生成预测分类
table(data.frame(predict=ifelse(prdict_res>0.5, "virginica", "versicolor"), real=real_sort));  #计算分类准确度



使用R完成逻辑斯蒂回归分类 直接上代码,如下: - 黄大仙 - 黄大仙


點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消