降级熔断框架 Hystrix 源码解析:滑动窗口统计
概述
Hystrix 是一个开源的降级熔断框架,用于提高服务可靠性,适用于依赖大量外部服务的业务系统。什么是降级熔断呢?
降级
业务降级,是指牺牲非核心的业务功能,保证核心功能的稳定运行。简单来说,要实现优雅的业务降级,需要将功能实现拆分到相对独立的不同代码单元,分优先级进行隔离。在后台通过开关控制,降级部分非主流程的业务功能,减轻系统依赖和性能损耗,从而提升集群的整体吞吐率。
降级的重点是:业务之间有优先级之分。降级的典型应用是:电商活动期间关闭非核心服务,保证核心买买买业务的正常运行。
熔断
老式电闸都安装了保险丝,一旦有人使用超大功率的设备,保险丝就会烧断以保护各个电器不被强电流给烧坏。同理我们的接口也需要安装上“保险丝”,以防止非预期的请求对系统压力过大而引起的系统瘫痪,当流量过大时,可以采取拒绝或者引流等机制。
同样在分布式系统中,当被调用的远程服务无法使用时,如果没有过载保护,就会导致请求的资源阻塞在远程服务器上耗尽资源。很多时候,刚开始可能只是出现了局部小规模的故障,然而由于种种原因,故障影响范围越来越大,最终导致全局性的后果。这种过载保护,就是熔断器。
在 hystrix 中,熔断相关的配置有以下几个:
滑动窗口长度,单位毫秒
hystrix.command.HystrixCommandKey.circuitBreaker.sleepWindowInMilliseconds
滑动窗口滚动桶的长度,单位毫秒
hystrix.command.HystrixCommandKey.metrics.rollingPercentile.bucketSize
触发熔断的失败率阈值
hystrix.command.HystrixCommandKey.circuitBreaker.errorThresholdPercentage
触发熔断的请求量阈值
hystrix.command.HystrixCommandKey.circuitBreaker.requestVolumeThreshold
从配置信息里可以看出来,熔断逻辑判断里使用了滑动窗口来统计服务调用的成功、失败量。那么这里的滑动窗口是如何实现的呢?下面我们深入源码来研究一下。
注:使用的源码版本是 2017-09-13 GitHub 上 master 分支最新代码。
滑动窗口
在 hystrix 里,大量使用了 RxJava 这个响应式函数编程框架,滑动窗口的实现也是使用了 RxJava 框架。
RxJava 介绍可以查看我所理解的RxJava — 上手其实很简单。
源码分析
一个滑动窗口有两个关键要素组成:窗口时长、窗口滚动时间间隔。通常一个窗口会划分为若干个桶 bucket,每个桶的大小等于窗口滚动时间间隔。也就是说,滑动窗口统计数据时,分两步:
统计一个 bucket 内的数据;
统计一个窗口,即若干个 bucket 的数据。
bucket 统计的代码位于 BucketedCounterStream 类中,其关键的代码如下所示:
// 这里的代码并非全部,只展示了和 bucket 统计相关的关键代码public abstract class BucketedCounterStream< Event extends HystrixEvent, Bucket, Output> { protected final int numBuckets; protected final Observable< Bucket> bucketedStream; protected final AtomicReference< Subscription> subscription = new AtomicReference< Subscription>(null); private final Func1< Observable< Event>, Observable< Bucket>> reduceBucketToSummary; protected BucketedCounterStream(final HystrixEventStream< Event> inputEventStream, final int numBuckets, final int bucketSizeInMs, final Func2< Bucket, Event, Bucket> appendRawEventToBucket) { this.numBuckets = numBuckets; this.reduceBucketToSummary = new Func1< Observable< Event>, Observable< Bucket>>() { @Override
public Observable< Bucket> call(Observable< Event> eventBucket) { return eventBucket.reduce(getEmptyBucketSummary(), appendRawEventToBucket);
}
}; final List< Bucket> emptyEventCountsToStart = new ArrayList< Bucket>(); for (int i = 0; i < numBuckets; i++) {
emptyEventCountsToStart.add(getEmptyBucketSummary());
} this.bucketedStream = Observable.defer(new Func0< Observable< Bucket>>() { @Override
public Observable< Bucket> call() { return inputEventStream
.observe()
.window(bucketSizeInMs, TimeUnit.MILLISECONDS) //bucket it by the counter window so we can emit to the next operator in time chunks, not on every OnNext
.flatMap(reduceBucketToSummary) //for a given bucket, turn it into a long array containing counts of event types
.startWith(emptyEventCountsToStart); //start it with empty arrays to make consumer logic as generic as possible (windows are always full)
}
});
} abstract Bucket getEmptyBucketSummary();
}首先我们看这几行代码,这几行代码功能是:将服务调用级别的输入数据流 inputEventStream 以 bucketSizeInMs 毫秒为一个桶进行了汇总,汇总的结果输入到桶级别数据流 bucketedStream。
this.bucketedStream = Observable.defer(new Func0<Observable<Bucket>>() { @Override
public Observable<Bucket> call() { return inputEventStream
.observe()
.window(bucketSizeInMs, TimeUnit.MILLISECONDS) // window 窗函数汇聚 bucketSizeInMs 毫秒内的数据后,每隔 bucketSizeInMs 毫秒批量发送出去
.flatMap(reduceBucketToSummary) // flatMap 方法接收到 window 窗函数发来的数据,使用 reduceBucketToSummary 函数进行汇总统计
.startWith(emptyEventCountsToStart); // 给 bucketedStream 发布源设定一个起始值
}
});RxJava 基于观察者模式,又叫“发布-订阅”模式。inputEventStream 是 HystrixEventStream 对象,其 observe() 方法返回的是一个被观察者 Observable 对象,也可以说是一个发布源 Publisher。
public interface HystrixEventStream<E extends HystrixEvent> { Observable<E> observe();
}在 Hystrix 中有多种数据发布源,与服务调用的熔断相关的是 HystrixCommandCompletionStream:
每一次服务调用结束,调用 write 方法记录成功、失败等信息;
write 方法调用了 writeOnlySubject.onNext,writeOnlySubject 是一个线程安全的发布源 PublishSubject,用于发布 HystrixCommandCompletion 类型的数据,onNext 功能是发布一个事件或数据;
observe 方法返回的可订阅数据源 readOnlyStream 是 writeOnlySubject 的只读版本。
public class HystrixCommandCompletionStream implements HystrixEventStream<HystrixCommandCompletion> { private final HystrixCommandKey commandKey; // 服务调用标记 key
private final Subject<HystrixCommandCompletion, HystrixCommandCompletion> writeOnlySubject; private final Observable<HystrixCommandCompletion> readOnlyStream;
HystrixCommandCompletionStream(final HystrixCommandKey commandKey) { this.commandKey = commandKey; this.writeOnlySubject = new SerializedSubject<HystrixCommandCompletion, HystrixCommandCompletion>(PublishSubject.<HystrixCommandCompletion>create()); this.readOnlyStream = writeOnlySubject.share();
} public void write(HystrixCommandCompletion event) {
writeOnlySubject.onNext(event);
} @Override
public Observable<HystrixCommandCompletion> observe() { return readOnlyStream;
}
}上面分析了 bucket 统计和事件发布源相关的代码,下面我们再看一下 window 统计的代码。滑动窗口统计的代码在 BucketedRollingCounterStream 类中,window 统计和 bucket 统计原理是一样的,只是维度不同:
bucket 统计的维度是时间,比如 bucketSizeInMs 毫秒;
window 统计的维度是若干数据,在这里是 numBuckets 个 bucket。
注意:numBuckets 的值等于 hystrix.command.HystrixCommandKey.circuitBreaker.sleepWindowInMilliseconds 除以 hystrix.command.HystrixCommandKey.metrics.rollingPercentile.bucketSize,numBuckets 是整数,所以 sleepWindowInMilliseconds 必须是 bucketSize 的整数倍,否则 Hystrix 就会抛出异常。
public abstract class BucketedRollingCounterStream<Event extends HystrixEvent, Bucket, Output> extends BucketedCounterStream<Event, Bucket, Output> { private Observable<Output> sourceStream; private final AtomicBoolean isSourceCurrentlySubscribed = new AtomicBoolean(false); protected BucketedRollingCounterStream(HystrixEventStream<Event> stream, final int numBuckets, int bucketSizeInMs, final Func2<Bucket, Event, Bucket> appendRawEventToBucket, final Func2<Output, Bucket, Output> reduceBucket) { super(stream, numBuckets, bucketSizeInMs, appendRawEventToBucket);
Func1<Observable<Bucket>, Observable<Output>> reduceWindowToSummary = new Func1<Observable<Bucket>, Observable<Output>>() { @Override
public Observable<Output> call(Observable<Bucket> window) { return window.scan(getEmptyOutputValue(), reduceBucket).skip(numBuckets);
}
}; this.sourceStream = bucketedStream //stream broken up into buckets
.window(numBuckets, 1) //emit overlapping windows of buckets
.flatMap(reduceWindowToSummary) //convert a window of bucket-summaries into a single summary
.doOnSubscribe(new Action0() { @Override
public void call() {
isSourceCurrentlySubscribed.set(true);
}
})
.doOnUnsubscribe(new Action0() { @Override
public void call() {
isSourceCurrentlySubscribed.set(false);
}
})
.share() // multiple subscribers should get same data
.onBackpressureDrop(); // 如果消费者处理数据太慢导致数据堆积,就丢弃部分数据
} @Override
public Observable<Output> observe() { return sourceStream;
}
}接下来我们介绍一下 BucketedRollingCounterStream 构造函数的主要参数:
HystrixEventStream stream:数据发布源;
int numBuckets:每个窗口内部 bucket 个数;
int bucketSizeInMs:bucket 时长,也是窗口滚动时间间隔;
appendRawEventToBucket:bucket 内部统计函数,其功能是起始值 Bucket 加上 Event 后,输出 Bucket 类型值,对对个数据的处理具有累积的效果;
reduceBucket:和 appendRawEventToBucket 类似,用于 window 统计。
BucketedRollingCounterStream 提供了完整的滑动窗口统计的服务,想要使用滑动窗口来统计数据的继承实现 BucketedRollingCounterStream 即可。 接下来我们看一下用于滑动统计服务调用成功、失败次数的 RollingCommandEventCounterStream 类:
public class RollingCommandEventCounterStream extends BucketedRollingCounterStream<HystrixCommandCompletion, long[], long[]> { private static final ConcurrentMap<String, RollingCommandEventCounterStream> streams = new ConcurrentHashMap<String, RollingCommandEventCounterStream>(); private static final int NUM_EVENT_TYPES = HystrixEventType.values().length; public static RollingCommandEventCounterStream getInstance(HystrixCommandKey commandKey, int numBuckets, int bucketSizeInMs) {
RollingCommandEventCounterStream initialStream = streams.get(commandKey.name()); if (initialStream != null) { return initialStream;
} else { synchronized (RollingCommandEventCounterStream.class) {
RollingCommandEventCounterStream existingStream = streams.get(commandKey.name()); if (existingStream == null) {
RollingCommandEventCounterStream newStream = new RollingCommandEventCounterStream(commandKey, numBuckets, bucketSizeInMs,
HystrixCommandMetrics.appendEventToBucket, HystrixCommandMetrics.bucketAggregator);
streams.putIfAbsent(commandKey.name(), newStream); return newStream;
} else { return existingStream;
}
}
}
} private RollingCommandEventCounterStream(HystrixCommandKey commandKey, int numCounterBuckets, int counterBucketSizeInMs,
Func2<long[], HystrixCommandCompletion, long[]> reduceCommandCompletion,
Func2<long[], long[], long[]> reduceBucket) { super(HystrixCommandCompletionStream.getInstance(commandKey), numCounterBuckets, counterBucketSizeInMs, reduceCommandCompletion, reduceBucket);
}
}RollingCommandEventCounterStream 构造函数是私有的,需要通过 getInstance 方法来获取实例,这么做是为了确保每个依赖服务 HystrixCommandKey 只生成一个 RollingCommandEventCounterStream 实例。我们看一下构造 BucketedRollingCounterStream 的时候传入的参数,appendRawEventToBucket、reduceBucket 的实现分别是 HystrixCommandMetrics.appendEventToBucket、HystrixCommandMetrics.bucketAggregator,其主要功能就是一个对各种 HystrixEventType 事件的累加求和。
public class HystrixCommandMetrics extends HystrixMetrics { private static final HystrixEventType[] ALL_EVENT_TYPES = HystrixEventType.values(); public static final Func2<long[], HystrixCommandCompletion, long[]> appendEventToBucket = new Func2<long[], HystrixCommandCompletion, long[]>() { @Override
public long[] call(long[] initialCountArray, HystrixCommandCompletion execution) {
ExecutionResult.EventCounts eventCounts = execution.getEventCounts(); for (HystrixEventType eventType: ALL_EVENT_TYPES) { switch (eventType) { case EXCEPTION_THROWN: break; //this is just a sum of other anyway - don't do the work here
default:
initialCountArray[eventType.ordinal()] += eventCounts.getCount(eventType); break;
}
} return initialCountArray;
}
}; public static final Func2<long[], long[], long[]> bucketAggregator = new Func2<long[], long[], long[]>() { @Override
public long[] call(long[] cumulativeEvents, long[] bucketEventCounts) { for (HystrixEventType eventType: ALL_EVENT_TYPES) { switch (eventType) { case EXCEPTION_THROWN: for (HystrixEventType exceptionEventType: HystrixEventType.EXCEPTION_PRODUCING_EVENT_TYPES) {
cumulativeEvents[eventType.ordinal()] += bucketEventCounts[exceptionEventType.ordinal()];
} break; default:
cumulativeEvents[eventType.ordinal()] += bucketEventCounts[eventType.ordinal()]; break;
}
} return cumulativeEvents;
}
};
}这个滑动窗口是在 Hystrix 哪里使用的呢?必然是熔断逻辑里啊。熔断逻辑位于 HystrixCircuitBreaker 类中,其使用滑动窗口的关键代码如下。主要是调用了 BucketedRollingCounterStream 的 observe 方法,对统计数据的发布源进行了订阅,收到统计数据后,对熔断器状态 circuitOpened 进行更新。
/* package */class HystrixCircuitBreakerImpl implements HystrixCircuitBreaker { private final HystrixCommandProperties properties; private final HystrixCommandMetrics metrics; enum Status {
CLOSED, OPEN, HALF_OPEN;
} private final AtomicReference<Status> status = new AtomicReference<Status>(Status.CLOSED); private final AtomicLong circuitOpened = new AtomicLong(-1); private final AtomicReference<Subscription> activeSubscription = new AtomicReference<Subscription>(null); protected HystrixCircuitBreakerImpl(HystrixCommandKey key, HystrixCommandGroupKey commandGroup, final HystrixCommandProperties properties, HystrixCommandMetrics metrics) { this.properties = properties; this.metrics = metrics; //On a timer, this will set the circuit between OPEN/CLOSED as command executions occur
Subscription s = subscribeToStream();
activeSubscription.set(s);
} private Subscription subscribeToStream() { return metrics.getHealthCountsStream()
.observe()
.subscribe(new Subscriber<HealthCounts>() { @Override
public void onCompleted() {
} @Override
public void onError(Throwable e) {
} @Override
public void onNext(HealthCounts hc) { // 判断请求次数,是否达到阈值。毕竟请求量太小,熔断的意义也就不大了
if (hc.getTotalRequests() < properties.circuitBreakerRequestVolumeThreshold().get()) {
} else { // 判断失败率是否达到阈值
if (hc.getErrorPercentage() < properties.circuitBreakerErrorThresholdPercentage().get()) {
} else { // 失败率达到阈值,则修改熔断状态为 OPEN
if (status.compareAndSet(Status.CLOSED, Status.OPEN)) {
circuitOpened.set(System.currentTimeMillis());
}
}
}
}
});
}
}手动写一个示例
前面解析了 Hystrix 中滑动窗口的实现,由于考虑了各种细节其实现非常复杂,所以我们写了一个简易版本的滑动窗口统计,方便观察学习。
import org.slf4j.Logger;import org.slf4j.LoggerFactory;import rx.Observable;import rx.functions.Func1;import rx.functions.Func2;import rx.subjects.PublishSubject;import rx.subjects.SerializedSubject;import java.util.concurrent.TimeUnit;/**
* 模拟滑动窗口计数
* Created by albon on 17/6/24.
*/public class RollingWindowTest { private static final Logger logger = LoggerFactory.getLogger(WindowTest.class); public static final Func2<Integer, Integer, Integer> INTEGER_SUM =
(integer, integer2) -> integer + integer2; public static final Func1<Observable<Integer>, Observable<Integer>> WINDOW_SUM =
window -> window.scan(0, INTEGER_SUM).skip(3); public static final Func1<Observable<Integer>, Observable<Integer>> INNER_BUCKET_SUM =
integerObservable -> integerObservable.reduce(0, INTEGER_SUM); public static void main(String[] args) throws InterruptedException {
PublishSubject<Integer> publishSubject = PublishSubject.create();
SerializedSubject<Integer, Integer> serializedSubject = publishSubject.toSerialized();
serializedSubject
.window(5, TimeUnit.SECONDS) // 5秒作为一个基本块
.flatMap(INNER_BUCKET_SUM) // 基本块内数据求和
.window(3, 1) // 3个块作为一个窗口,滚动布数为1
.flatMap(WINDOW_SUM) // 窗口数据求和
.subscribe((Integer integer) ->
logger.info("[{}] call ...... {}", // 输出统计数据到日志
Thread.currentThread().getName(), integer)); // 缓慢发送数据,观察效果
for (int i=0; i<100; ++i) { if (i < 30) {
serializedSubject.onNext(1);
} else {
serializedSubject.onNext(2);
}
Thread.sleep(1000);
}
}
}总结
一个滑动窗口统计主要分为两步:
bucket 统计,bucket 的大小决定了滑动窗口滚动时间间隔;
window 统计,window 的时长决定了包含的 bucket 的数目。
Hystrix 实现滑动窗口利用了 RxJava 这个响应式函数编程框架,主要是其中的几个函数:
window:根据指定时间或指定数量对数据流进行聚集,相当于 1 对 N 的转换;
flatMap:将输入数据流,转换成另一种格式的数据流,在滑动窗口统计中起到了数据求和的功能(当然其功能并不限于求和)。
Hystrix 最核心的基础组件,当属提供观察者模式(发布-订阅模式)的 RxJava。
参考文献
作者:albon
链接:https://www.jianshu.com/p/c1b6497889b4
共同學習,寫下你的評論
評論加載中...
作者其他優質文章