亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

大語言模型(LLMs)全面學習指南(入門到精通) - 大語言模型學習

標簽:
雜七雜八
概述

大语言模型(LLMs)是深度学习领域中的高级模型,专为理解、解析和生成类似人类的文本设计。它们通过学习大量数据集,掌握语言模式、结构和上下文,在文本生成、分类、分析、翻译等领域展现强大应用能力。LLMs的出现促进了人工智能领域的进步,特别是在自然语言处理方面,它们的复杂性和泛化能力使得在聊天机器人、文本生成、代码补全、数据分析等场景下,有了更高效、更智能的解决方案。未来,随着技术迭代和应用普及,LLMs将为提高生产效率、优化用户体验和推动创新提供更多价值。

代码示例:使用Hugging Face Transformers库进行文本生成任务

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")

text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
output = text_generator("Hello!", max_length=30, num_return_sequences=1)[0]['generated_text']
print(output)
大语言模型(LLMs)全面学习指南(入门到精通) - 大语言模型学习
一. 何为大语言模型 (LLMs)

大语言模型(LLMs)是深度学习领域的一种高级模型,专门设计用于理解、解析和生成类似人类的文本。它们在大量的数据集上进行训练,以学习语言的模式、结构和上下文,从而在文本生成、文本分类、情感分析、摘要、机器翻译等领域展现出强大的应用能力。

代码示例:使用预训练的BERT模型进行文本分类

from transformers import BertTokenizer, BertForSequenceClassification
from sklearn.model_selection import train_test_split
import torch
from torch.utils.data import DataLoader, TensorDataset

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
texts, labels = ["This is a sample text.", "Another sample text."], [0, 1]
encoded_data = tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors='pt')
input_ids, attention_masks = encoded_data['input_ids'], encoded_data['attention_mask']
labels_tensor = torch.tensor(labels)
dataset = TensorDataset(input_ids, attention_masks, labels_tensor)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
optimizer = torch.optim.AdamW(model.parameters())
for epoch in range(3):
    for batch in dataloader:
        input_ids, attention_masks, labels = batch
        outputs = model(input_ids, attention_mask=attention_masks, labels=labels)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

代码示例:使用自定义数据集微调LLM

from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments

model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
training_args = TrainingArguments(output_dir='./results', num_train_epochs=3)
trainer = Trainer(model=model, args=training_args, train_dataset=custom_dataset, eval_dataset=validation_dataset)
trainer.train()
二. LLMs的类型与组成部分

代码示例:构建基于Transformer架构的自定义LLM

from transformers import BertModel, BertConfig
from torch import nn

class CustomTransformerModel(nn.Module):
    def __init__(self):
        super(CustomTransformerModel, self).__init__()
        config = BertConfig()
        self.bert = BertModel(config)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids, attention_mask=attention_mask)
        return outputs.last_hidden_state

model = CustomTransformerModel()

代码示例:使用模型进行预测

input_data = ["I love playing basketball.", "Basketball is a fun sport."]
encoded_input = tokenizer(input_data, padding=True, truncation=True, max_length=512, return_tensors='pt')
output = model(**encoded_input)
三. LLMs的训练过程详解

代码示例:使用Hugging Face库进行模型训练

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir='./results',
    evaluation_strategy='epoch',
    num_train_epochs=3,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    learning_rate=2e-5,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=training_set,
    eval_dataset=validation_set,
)

trainer.train()

代码示例:使用PyTorch自定义训练循环

import torch
from torch.utils.data import DataLoader

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
criterion = nn.CrossEntropyLoss()

train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
model.train()

for epoch in range(epochs):
    total_loss = 0
    for batch in train_loader:
        inputs, targets = batch
        inputs, targets = inputs.to(device), targets.to(device)
        outputs = model(inputs)
        loss = criterion(outputs, targets)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss += loss.item()

    print(f'Epoch {epoch+1}/{epochs}, Loss: {total_loss/len(train_loader)}')
四. LLMs的工作原理

代码示例:使用注意力机制的实现

import torch
import torch.nn as nn

class Attention(nn.Module):
    def __init__(self, hidden_size):
        super(Attention, self).__init__()
        self.hidden_size = hidden_size
        self.W1 = nn.Linear(hidden_size, hidden_size)
        self.W2 = nn.Linear(hidden_size, hidden_size)
        self.V = nn.Linear(hidden_size, 1)

    def forward(self, hidden, encoder_outputs):
        batch_size = encoder_outputs.size(0)
        seq_len = encoder_outputs.size(1)
        hidden = hidden.unsqueeze(1).expand(batch_size, seq_len, self.hidden_size)
        energy = self.V(torch.tanh(self.W1(encoder_outputs) + self.W2(hidden)))
        attention_weights = torch.softmax(energy, dim=1)
        context_vector = torch.bmm(attention_weights.unsqueeze(1), encoder_outputs).squeeze(1)
        return context_vector, attention_weights
五. LLMs的应用案例

代码示例:利用模型进行聊天机器人对话生成

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")

def generate_response(input_text):
    input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
    output = model.generate(input_ids, max_length=100, pad_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    return response

response = generate_response("Hi, I'm using a chatbot!")
print(response)
六. LLMs的未来趋势与挑战

代码示例:探索LLM在多模态学习的潜力

from transformers import pipeline

classifier = pipeline('image-classification', model='microsoft/resnet-18')
image_path = 'path/to/image.jpg'
prediction = classifier(image_path)
print(f"Predicted class is: {prediction[0]['label']}, with probability: {prediction[0]['score']}")
七. AIG大模型学习福利

代码示例:利用GitLab进行版本控制和协作

# 使用GitLab进行版本控制
git init
git add .
git commit -m "Initial commit"
git remote add origin https://gitlab.com/username/project.git
git push -u origin main

# 与团队协作
git clone https://gitlab.com/username/project.git
git checkout -b feature/new-llm-feature
git push -u origin feature/new-llm-feature
八. 结语与后续资源链接

代码示例:在GitHub上创建个人项目

# 创建项目
git clone https://github.com/username/llm-project.git
cd llm-project
git init
git add .
git commit -m "Initial commit"
git remote add origin https://github.com/username/llm-project.git
git push -u origin main

# 个人学习与项目分享
# 在GitHub上发布项目
git remote add origin https://github.com/username/llm-project.git
git push -u origin main

通过这些代码示例和实践指南,您将能够更好地理解和应用大语言模型(LLMs)的各个方面,从基础理论到实际项目开发,从而促进您在AI领域的专业成长。

點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消