亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

我讓gpt寫了一段正則表達式代碼,可是運行報錯,可以幫忙看看哪里出了問題?

大家好,我是皮皮。

一、前言

前几天在Python最强王者群【HZL】问了一个Python正则表达式的问题,这里拿出来给大家分享下。

image.png

截图如下图所示:

image.png

单独跑的这一行,跑出了下图这个。

image.png

这个报错是你提取了4列,应该赋值给4列,而不应该是1列。

二、实现过程

这里【大锤子】给了一个思路,你可以把报错信息报回给GPT,让其帮忙解决。

image.png

后来【瑜亮老师】给了一个代码,如下所示:

df = pd.DataFrame({'price_range': ['R32 ($16,500,00.01 to $20,000,00)',
                                   'R43 ($5,000,000.00 to $8,000,000.50)',
                                   'R15 (below $1,000,000)']})
# re提取金额数字
df['temp'] = df['price_range'].map(lambda x: re.findall(r'\$([0-9,.]+)', x))
# 补全min和max
df['temp'] = df['temp'].map(lambda x: ['0'] + x if len(x) == 1 else x)
# 去掉原金额中的逗号
df['temp'] = df['temp'].map(lambda x: '。'.join(x).replace(',', ''))
# 将数据拆解为两列
df2 = df['temp'].str.split('。', expand=True)
df2.columns = ['min_price', 'max_price']
print(df2)

代码略显繁琐,实现了需求。顺利地解决了粉丝的问题。

image.png

后来【瑜亮老师】用pd.to_numeric转换字符串为浮点型,也是可以的。

image.png

代码如下:

方法二:
# # re提取金额数字
df['temp'] = df['price_range'].map(lambda x: re.findall(r'\$([0-9,.]+)', x))
# # 补全min和max
df['temp'] = df['temp'].map(lambda x: '。'.join(['0'] + x) if len(x) == 1 else '。'.join(x))
# 将数据拆解为两列
df2 = df['temp'].str.split('。', expand=True)
# 把金额数字转换为浮点型
df2 = df2.replace({',': ''}, regex=True).apply(pd.to_numeric)
df2.columns = ['min_price', 'max_price']
print(df2)

三、总结

大家好,我是皮皮。这篇文章主要盘点了一个Python正则表达式的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

最后感谢粉丝【HZL】提问,感谢【༺࿈黑科技·鼓包࿈༻】、【大锤子】、【瑜亮老师】、【隔壁😼山楂】给出的思路和代码解析,感谢【eric】等人参与学习交流。

【提问补充】温馨提示,大家在群里提问的时候。可以注意下面几点:如果涉及到大文件数据,可以数据脱敏后,发点demo数据来(小文件的意思),然后贴点代码(可以复制的那种),记得发报错截图(截全)。代码不多的话,直接发代码文字即可,代码超过50行这样的话,发个.py文件就行。

[图片上传失败…(image-380e61-1684237515839)]

點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消