亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

人工智能編程:循環神經網絡RNN和長短時記憶模型LSTM的分析

標簽:
Maya

人工智能编程:循环神经网络RNN和长短时记忆模型LSTM的分析

ht=tαnh(WihXt+bih+whhht-1+bhh)

在pytorch中我们使用nn.RNN()就可以创建出RNN神经网络,它有如下参数:

input_size表示输入xt的特征维度

hidden_size表示输出ht的特征维度,或者理解为隐藏层的神经元数

num_layers表示RNN网络的层数,默认是1层

nonlinearity表示非线性激活函数的选择,默认tanh,当然也可以选择relu

bias表示是否使用偏置,默认是Ture,使用batch_first这个参数是决定网络输入的维度顺序,默认是(seq,batch,feature)输入,seq表示序列长度,batch表示批量,feature表示特征维度,我们也可以将其修改为(batch,seq,feature),只用将这个参数设置为True dropout个参数接受一个0~1的数值,这个dropout层会在除了最后一层之外的其他输出层加上bidirectional默认的False,如果我们要是使用双向循环网络的话,那么我们就可以设置这个参数是True

點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消