亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

功能強大的python包(一):Numpy

1.Numpy简介

Numpy图标

Numpy是python的一种开源的数值计算扩展;Numpy可用来存储和处理大型矩阵;Numpy支持大量的维度数组与矩阵运算。

2.数据类型

Numpy最基本最常用的数据类型是ndarray(n维数组),其中的很多方法也是针对ndarray对象而开发的;其与python自带数据类型list(列表)基本无差别;因此对于list对象的操作都可以运用到ndarray对象上。

3.Numpy总览

Numpy思维导图


数据生成

生成ndarray对象的方法汇总

函数 实例
np.array np.array([1,2,3,4,5])
np.arange np.arange(1,10)
np.linspace np.linspace(1,10,10)
np.ones np.ones((2,2))
np.ones_like np.ones_like([[1,2,3],[3,2,1]])
np.zeros np.zeros((3,2))
np.zeros_like np.zeros_like([[3,2,1],[1,2,3]])
np.empty np.empty((3,4))
np.empty_like np.empty_like([[1,2,3],[3,2,1]])
import numpy as np

np.array([1,2,3,4,5])
np.arange(1,10)
np.linspace(1,10,10)
np.ones((2,2))
np.ones_like([[1,2,3],[3,2,1]])
np.zeros((3,2))
np.zeros_like([[3,2,1],[1,2,3]])
np.empty((3,4))
np.empty_like([[1,2,3],[3,2,1]])

数据结构
函数 实例
np.size np.size(np.ones((3,4)))
np.shape np.shape(np.ones((3,4)))
np.split np.split(np.ones((3,4)),1)
np.reshape np.ones((3,4)).reshape(2,6)
np.concatenate np.concatenate(ones((3,4)))
np.transpose np.ones((3,4)).transpose( )
import numpy as np

np.size(np.ones((3,4)))
np.shape(np.ones((3,4)))
np.split(np.ones((3,4)),1)
np.ones((3,4)).reshape(2,6)
np.concatenate(ones((3,4)))
np.ones((3,4)).transpose( )

np.random

np.random模块可以用于生成呈各种分布的数据

函数 实例
np.random.rand np.random.rand(2,3)
np.random.randn np.random.randn(3,4)
np.random.gamma np.random.gamma(3,10)
np.random.normal np.random.normal(0,1)
np.random.randint np.random.randint(0,10,10)
import numpy as np

np.random.rand(2,3)
np.random.randn(3,4)
np.random.gamma(3,10)
np.random.normal(0,1)
np.random.randint(0,10,10)

数值计算
函数 实例
np.sin np.sin(10)
np.cos np.cos(60)
np.exp np.exp(4)
np.power np.power(2,3)
import numpy as np

np.sin(10)
np.cos(60)
np.exp(4)
np.power(2,3)

函数 实例
np.abs np.abs(np.arange(-5,4))
np.sum np.sum([1,2,3])
np.var np.var([1,2,3])
np.std np.std([1,2,3])
np.mean np.mean([1,2,3])
np.sqrt np.sqrt([4,9,16])
np.floor np.floor([2.1,3.7,4.3])
np.ceil np.ceil([2,1,3.7,4.3])
np.median np.median([3,2,4])
np.cumsum np.cumsum([[1,2,3],[3,2,1]])
np.cumprod np.cumprod([[1,2,3],[3,2,1]])
import numpy as np

np.abs(np.arange(-5,4))
np.sum([1,2,3])
np.var([1,2,3])
np.std([1,2,3])
np.mean([1,2,3])
np.sqrt([4,9,16])
np.floor([2.1,3.7,4.3])
np.ceil([2,1,3.7,4.3])
np.cumsum([[1,2,3],[3,2,1]])
np.cumprod([[1,2,3],[3,2,1]])

索引
函数 实例
np.argmin np.argmin([4,2,1,6,8])
np.argmax np.argmax([4,2,1,6,8])
import numpy as np

np.argmin([4,2,1,6,8])
np.argmax([4,2,1,6,8])

Ending

點擊查看更多內容
1人點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消