亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

Hoeffding霍夫丁不等式及其在集成學習理論的應用

標簽:
人工智能

Hoeffding霍夫丁不等式

机器学习中,算法的泛化能力往往是通过研究泛化误差的概率上界所进行的,这个就称为泛化误差上界。直观的说,在有限的训练数据中得到的规律,则认为真实的总体数据中也是近似这个规律的。比如一个大罐子里装满了红球和白球,各一半,我随手抓了一把,然后根据这些红球白球的比例预测整个罐子也是这样的比例,这样做不一定很准确,但结果总是近似的,而且如果抓出的球越多,预测结果也就越可信。

对于两种不同的学习方法,通常比较他们的误差上界来决定他们的优劣。hoeffding不等式于1963年被Wassily Hoeffding提出并证明,用于计算随机变量的和与其期望值偏差的概率上限。下面我们理清hoeffding 不等式的来龙去脉。



2.集成学习的错误率上界

原文出处


點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消