亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

線性回歸基礎代碼

標簽:
機器學習
# Use linear model to model this data.
from sklearn.linear_model import LinearRegression
import numpy as np

lr=LinearRegression()
lr.fit(pga.distance[:,np.newaxis],pga['accuracy'])  # Another way is using pga[['distance']]
theta0=lr.intercept_
theta1=lr.coef_
print(theta0)
print(theta1)


#calculating cost-function for each theta1
#计算平均累积误差
def cost(x,y,theta0,theta1):
    J=0
    for i in range(len(x)):
        mse=(x[i]*theta1+theta0-y[i])**2
        J+=mse
    return J/(2*len(x))

theta0=100
theta1s = np.linspace(-3,2,197)
costs=[]
for theta1 in theta1s:
    costs.append(cost(pga['distance'],pga['accuracy'],theta0,theta1))
plt.plot(theta1s,costs)
plt.show()
print(pga.distance)


#调整theta
def partial_cost_theta0(x,y,theta0,theta1):
    #我们的模型是线性拟合函数时:y=theta1*x + theta0,而不是sigmoid函数,当非线性时我们可以用sigmoid
    #直接多整个x series操作,省的一个一个计算,最终求sum 再平均
    h=theta1*x+theta0  
    diff=(h-y)
    partial=diff.sum()/len(diff)
    return partial
partial0=partial_cost_theta0(pga.distance,pga.accuracy,1,1)

def partial_cost_theta1(x,y,theta0,theta1):
    #我们的模型是线性拟合函数:y=theta1*x + theta0,而不是sigmoid函数,当非线性时我们可以用sigmoid
    h=theta1*x+theta0
    diff=(h-y)*x
    partial=diff.sum()/len(diff)
    return partial
partial1=partial_cost_theta1(pga.distance,pga.accuracy,0,5)
print(partial0)
print(partial1)


def gradient_descent(x,y,alpha=0.1,theta0=0,theta1=0):  #设置默认参数
    #计算成本
    #调整权值
    #计算错误代价,判断是否收敛或者达到最大迭代次数
    most_iterations=1000
    convergence_thres=0.000001 
   
    c=cost(x,y,theta0,theta1)
    costs=[c]
    cost_pre=c+convergence_thres+1.0
    
    counter=0
    while( (np.abs(c-cost_pre)>convergence_thres) & (counter<most_iterations) ):
        update0=alpha*partial_cost_theta0(x,y,theta0,theta1)
        update1=alpha*partial_cost_theta1(x,y,theta0,theta1)
        
        theta0-=update0
        theta1-=update1

        cost_pre=c
        c=cost(x,y,theta0,theta1)
        costs.append(c)
        counter+=1
    return  {'theta0': theta0, 'theta1': theta1, "costs": costs}

print("Theta1 =", gradient_descent(pga.distance, pga.accuracy)['theta1'])
costs=gradient_descent(pga.distance,pga.accuracy,alpha=.01)['cost']
print(gradient_descent(pga.distance, pga.accuracy,alpha=.01)['theta1'])
plt.scatter(range(len(costs)),costs)
plt.show()

数据集 :
复制下面数据,保存为: pga.csv

distance,accuracy
290.3,59.5
302.1,54.7
287.1,62.4
282.7,65.4
299.1,52.8
300.2,51.1
300.9,58.3
279.5,73.9
287.8,67.6
284.7,67.2
296.7,60
283.3,59.4
284,72.2
292,62.1
282.6,66.5
287.9,60.9
279.2,67.3
291.7,64.8
289.9,58.1
289.8,61.7
298.8,56.4
280.8,60.5
294.9,57.5
287.5,61.8
282.7,56
277.7,72.5
270.5,71.7
285.2,66
315.1,55.2
281.9,67.6
293.3,58.2
286,59.9
285.6,58.2
289.9,65.7
277.5,59
293.6,56.8
301.1,65.4
300.8,63.4
287.4,67.3
281.8,72.6
277.4,63.1
279.1,66.5
287.4,66.4
280.9,62.3
287.8,57.2
261.4,69.2
272.6,69.4
291.3,65.3
294.2,52.8
285.5,49
287.9,61.1
282.2,65.6
301.3,58.2
276.2,61.7
281.6,68.1
275.5,61.2
309.7,53.1
287.7,56.4
291.6,56.9
284.1,65
299.6,57.5
282.7,60
271.5,72
292.1,58.2
295,59.4
274.9,69
273.6,68.7
299.9,60.1
279.9,74
289.9,66
283.6,59.8
310.3,52.4
291.7,65.6
284.2,63.2
295,53.5
298.6,55.1
297.4,60.4
299.7,67.7
284.4,69.7
286.4,72.4
285.9,66.9
297.6,54.3
272.5,62
277,66.2
287.6,60.9
280.4,69.4
280,63.7
295.4,52.8
274.4,68.8
286.5,73.1
287.7,65.2
291.5,65.9
279,69.4
299,65.2
290.1,69.1
288.9,67.9
288.8,68.2
283.2,61
293.2,58.4
285.3,67.3
284.1,65.7
281.4,67.7
286.1,61.4
284.9,62.3
284.8,68.1
296,62
282.9,71.8
280.9,67.8
291.2,62
292.8,62.2
291,61.9
285.7,62.4
283.9,62.9
298.4,61.5
285.1,65.3
286.1,60.1
283.1,65.4
289.4,58.3
284.6,70.7
296.6,62.3
295.9,64.9
295.2,62.8
293.9,54.5
275,65.5
286.8,69.5
291.1,64.4
284.8,62.5
283.7,59.5
295.4,66.9
291.8,62.7
274.9,72.3
302.9,61.2
272.1,80.4
274.9,74.9
296.3,59.4
286.2,58.8
294.2,63.3
284.1,66.5
299.2,62.4
275.4,71
273.2,70.9
281.6,65.9
295.7,55.3
287.1,56.8
287.7,66.9
296.7,53.7
282.2,64.2
291.7,65.6
281.6,73.4
311,56.2
278.6,64.7
288,65.7
276.7,72.1
292,62
286.4,69.9
292.7,65.7
294.2,62.9
278.6,59.6
283.1,69.2
284.1,66
278.6,73.6
291.1,60.4
294.6,59.4
274.3,70.5
274,57.1
283.8,62.7
272.7,66.9
303.2,58.3
282,70.4
281.9,61
287,59.9
293.5,63.8
283.6,56.3
296.9,55.3
290.9,58.2
303,58.1
292.8,61.1
281.1,65
293,61.1
284,66.5
279.8,66.7
292.9,65.4
284,66.9
282,64.5
280.6,64
287.7,63.4
287.7,63.4
298.3,59.5
299.6,53.4
291.3,62.5
295.2,61.4
288,62.4
297.8,59.5
286,62.6
285.3,66.2
286.9,63.4
275.1,73.7
點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消