亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

7-Flink的分布式緩存

標簽:
Java 大數據

分布式缓存

Flink提供了一个分布式缓存,类似于hadoop,可以使用户在并行函数中很方便的读取本地文件,并把它放在taskmanager节点中,防止task重复拉取。
此缓存的工作机制如下:程序注册一个文件或者目录(本地或者远程文件系统,例如hdfs或者s3),通过ExecutionEnvironment注册缓存文件并为它起一个名称。
当程序执行,Flink自动将文件或者目录复制到所有taskmanager节点的本地文件系统,仅会执行一次。用户可以通过这个指定的名称查找文件或者目录,然后从taskmanager节点的本地文件系统访问它。

示例

在ExecutionEnvironment中注册一个文件:

//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

//1:注册一个文件,可以使用hdfs上的文件 也可以是本地文件进行测试
env.registerCachedFile("/Users/wangzhiwu/WorkSpace/quickstart/text","a.txt");

在用户函数中访问缓存文件或者目录(这里是一个map函数)。这个函数必须继承RichFunction,因为它需要使用RuntimeContext读取数据:

DataSet<String> result = data.map(new RichMapFunction<String, String>() {
            private ArrayList<String> dataList = new ArrayList<String>();

            @Override
            public void open(Configuration parameters) throws Exception {
                super.open(parameters);
                //2:使用文件
                File myFile = getRuntimeContext().getDistributedCache().getFile("a.txt");
                List<String> lines = FileUtils.readLines(myFile);
                for (String line : lines) {
                    this.dataList.add(line);
                    System.err.println("分布式缓存为:" + line);
                }
            }

            @Override
            public String map(String value) throws Exception {
                //在这里就可以使用dataList
                System.err.println("使用datalist:" + dataList + "------------" +value);
                //业务逻辑
                return dataList +":" +  value;
            }
        });

        result.printToErr();
    }

完整代码如下,仔细看注释:


public class DisCacheTest {

    public static void main(String[] args) throws Exception{

        //获取运行环境
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        //1:注册一个文件,可以使用hdfs上的文件 也可以是本地文件进行测试
      //text 中有4个单词:hello flink hello FLINK env.registerCachedFile("/Users/wangzhiwu/WorkSpace/quickstart/text","a.txt");

        DataSource<String> data = env.fromElements("a", "b", "c", "d");

        DataSet<String> result = data.map(new RichMapFunction<String, String>() {
            private ArrayList<String> dataList = new ArrayList<String>();

            @Override
            public void open(Configuration parameters) throws Exception {
                super.open(parameters);
                //2:使用文件
                File myFile = getRuntimeContext().getDistributedCache().getFile("a.txt");
                List<String> lines = FileUtils.readLines(myFile);
                for (String line : lines) {
                    this.dataList.add(line);
                    System.err.println("分布式缓存为:" + line);
                }
            }

            @Override
            public String map(String value) throws Exception {
                //在这里就可以使用dataList
                System.err.println("使用datalist:" + dataList + "------------" +value);
                //业务逻辑
                return dataList +":" +  value;
            }
        });

        result.printToErr();
    }
}//

输出结果如下:

[hello, flink, hello, FLINK]:a
[hello, flink, hello, FLINK]:b
[hello, flink, hello, FLINK]:c
[hello, flink, hello, FLINK]:d
點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消