亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

F test 和 t test 小總結

Data Science Day 21: F -test and t-test

From last time we know t-test is used for comparing the mean of 2-level categorical variable and ANOVA is used for comparing the mean value of a 3-level categorical variable or more.

Question:

However, there is a question bugs me, why both T-test and ANOVA are comparing the mean value, but** one P-value comes from the t-test and the other P-value is derived from the F-test**?

[caption id=“attachment_1249” align=“alignnone” width=“300”]image

Pexels / Pixabay[/caption]

I did a bit research into this and discussed with little Rain, then we found out the key relation to answer is the equivalence of F and t-test.

Answer:

KaTeX parse error: Expected 'EOF', got ' ' at position 9: F= t^{2} ̲

image

The hidden reason is when pair of the sample are normally distributed then the ratios of variance of sample in each pair will always follow the same distribution. Therefore, the t-test and F-test generate the same p-values.

Example : F-test vs t-test in Blood pressure decrease dataset

We want to know if the blood pressure medication has changed the blood pressure for 15 patients after 6 months.

test=pd.DataFrame({"score_decrease": [ -5, -8, 0, 0, 0 ,2,4,6,8, 10,10, 10,18,26,32] })
center=pd.DataFrame({"score_remained": [ 0, 0, 0, 0, 0 ,0,0,0,0, 0,0, 0,0,0,0] })

image

F-test results:

scipy.stats.f_oneway(score_decrease,score_remained)
F_onewayResult(statistic=array([ 7.08657734]), pvalue=array([ 0.01272079]))

t-test results:

scipy.stats.ttest_ind(score_decrease, score_remained)
Ttest_indResult(statistic=array([ 2.66206261]), pvalue=array([ 0.01272079]))

As we can see the F-test and t-test have the same P-value= 0.0127.

I used SAS to generate a graph:

ods graphics on; 
proc ttest h0=0 plots(showh0) sides=u alpha=0.05;
var decrease;
run;
ods graphics off;

image

Summary:

Except for F=t2F=t^2F=t2, I summarized a table for F-test and t-test.

##t- test & F-test Assumption ##

  1. Observations are Independent and Random
  2. The population are Normally distributed
  3. No outliers

####t-test Null-hypothesis:
The mean value of the two groups are the same.
The mean value = n0.

F-test Null hypothesis:

The mean value of three or more groups are the same.
N1=N2=N3…

t-test Features

The Standard deviation is not known and Sample size is small.
F-test Features:
The variance of the normal populations is not known.

t-test Application:

1.Compare mean value of two groups.
2.Compare mean value of a group with a particular number.

F-test Application:

  1. comparing the variances of two or more populations.
  2. ANOVA comparing the mean value of 3 or more groups.

Happy Studying! 😉

點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消