亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

AI學習筆記——強化學習之動態規劃(Dynamic Programming)解決MDP(1)

標簽:
機器學習

要深入理解强化学习,必须了解背后支持的理论基础。动态规划(Dynamic programming)就是这些算法为什么能够求解最优MDP的理论基础。

webp

动态规划的本质是将复杂大问题分解成,相互重叠的简单子问题,求到子问题的的最优解,然后将这些最优解组合起来就是大问题的最优解。

举个简单的例子,女朋友想在衣帽间中找到最搭的穿戴(衣服,帽子,鞋子,首饰。。。)。这是一个复杂的问题,但是我们可以把这个问题分解成互相重叠的小问题,比如,找到最佳搭配的鞋子和裤子。最佳搭配的裤子和衣服,最佳搭配的衣服和首饰等等。。。将这些搭配打完分之后,你自然就会找到最佳搭配的(得分最高的)衣服,裤子,帽子,鞋子和首饰了。

能用动态规划解决的问题必须满足两个条件,第一是可以拆解成子问题,第二这些子问题必须能相互重叠,MDP就满足这两个条件。

在用动态规划解决MDP问题的时候需要用到之前提到的Bellman公式,已经用Bellman公式1.预测v函数(状态值函数),2.通过价值迭代(Value iteration)求最优MDP 3. 通过策略迭代(Policy Iternation)来求得最优MDP。这些内容将放在下一篇文章中介绍。



作者:Hongtao洪滔
链接:https://www.jianshu.com/p/29cf563e58bc


點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消