亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

Sequential Backward Selection

Sequential Backward Selection

Backward Selection is the selection method starting from the whole set and achieves the attribute set by*** removing the element that results in the maximum decrease of the Objective Function*** in each step.

Sequential Backward Selection Algorithm

  1. Let Y= X.
  2. x in Y where F(x) is maximized.
  3. Y- {xi}, and repeat step 2.

If we run a complete SBS Algorithm, we will have Y=ø, in order to avoid this scenario, we will impose a stopping criterion in practice.

Example:

Apply feature selection on the objective function without a stopping criterion.
F(x1,x2,x3,x4)=3x1x2x3+4x4F(x1,x2,x3,x4)=3*x1*x2-x3+4*x4

[caption id=“attachment_734” align=“alignnone” width=“750”]image

Nerivill / Pixabay[/caption]

Solution:

F(x1,x2,x3,x4)=3x1x2x3+4x4F(x1,x2,x3,x4)=3*x1*x2-x3+4*x4

  1. Check the Objective function value for x1, x2, x3 and x4.

If x1=0, we have F(0,1,1,1)=3
If x2=0, we have F(1,0,1,1)=3
If x3=0, we have F(1,1,0,1)=7
If x4=0, we have F(1,1,1,0)=2

Since x3 produce the maximum decrease value for the objective function, we will remove x3.

2. Check the Objective function value for Y-{x3}
If x1=0, we have F(0,1,0,1)=4
If x2=0, we have F(1,0,0,1)=4
If x4=0, we have F(1,1,0,0)=3

Since x1 and x2 produce the same value, we can pick either x1 or x2. I will pick x1 for simplicity.

3. Check the Objective function value for Y-{x3,x1}
If x2=0, we have F(0,0,0,1)=4
If x4=0, we have F(0,1,0,0)=0
Since x2=0 produce the highest value for the objective function, 4, we will remove x2 in step 3.

4. Check the Objective function value for {x4,x1,x2}∪{x3}
If x4=0, we have F(0,0,0,0)= 0
By finishing this step, we removed the whole set.

Summary:

Sequential Forward Selection is a smart choice to use when the desired cardinality of Y is small. Backward Selection is preferred if the desired cardinality is large.

Both SFS and SBS cannot compare the previous result and the current stage. We need more complicated approaches to resolve this limitation.

Thanks to Douglas Rumbaugh‘s Data Mining Class notes!

Happy studying! 😳

點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消