亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

Normalization Methods

Normalization

Data transformation is one of the critical steps in Data Mining. Among many data transformation methods, normalization is a most frequently used technique. For example, we can use Z-score normalization to reduce possible noise in sound frequency.

We will introduce three common normalization method, Max-Min Normalization, Z-Score Normalization, Scale multiplication.

Max-Min Normalization
xnormal=(xmin(x))(max(x)min(x))x_{normal}= \frac{(x- min(x))}{(max(x)- min(x))}
it will scale all the data between 0 and 1.
Example:
Chinese high schools use 150 point scale, USA high schools use 100 point scale and Russian high schools use 5 point scale.

`

Z-Score Normalization

Xznormal=(Xmean)sdX_{z-normal}= \frac{(X- mean)}{sd}
It will transform the data in units relative to the standard deviation.
Example:
It is useful when comparing data sets with different units (cm and inch).

Scale multiplication

$ Z_{z-normal} =X*10 or Z_{z-normal} =X/10$
It will transform the data in scales of muliple of 10.
Example:
Some money transactions are too large, we will divide 1000 to make it viewer friendly.

Code

import random
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import colors
from matplotlib.ticker import PercentFormatter
from matplotlib import pylab


y=random.sample(range(0,150),50)
x=list(map(int,y))
x1=np.array(x)
xmin=min(x)
xmax=max(x)

#Max-Min normalization
mmnorm=(x1 - xmin)/(xmax-xmin)
#plot

fig,axs=plt.subplots(1,2,sharey=True)

#Original random number
axs[0].hist(x, bins=10)
axs[0].title.set_text("Random Data")


#Max-Min normalizaed histogram Plot
axs[1].hist(mmnorm, bins=10,color="lightblue")
plt.title("Max-Min Normalized Data")
plt.show()

#Z-score Normalization

y2=random.sample(range(0,150),50)
x2=list(map(int,y3))
x21=np.array(x2)
mean=np.mean(x21)
sd=np.std(x21)


#scale normalization
znorm=(x21-mean)/sd

#plot

fig,axs=plt.subplots(1,2,sharey=True)

#Original random number
axs[0].hist(x2, bins=10, color="green")
axs[0].title.set_text("Random Data")


#scale normalizaed histogram Plot
axs[1].hist(znorm, bins=10,color="lightgreen")
plt.title("Z-score Normalized Data")
plt.show()

#scale

y3=random.sample(range(1000,10000),50)
x3=list(map(int,y3))
x31=np.array(x3)

#scale normalization
snorm=x31/1000

#plot

fig,axs=plt.subplots(1,2,sharey=True)

#Original random number
axs[0].hist(x3, bins=10, color="orange")
axs[0].title.set_text("Random Data")


#scale normalizaed histogram Plot
axs[1].hist(snorm, bins=10,color="yellow")
plt.title("Scale Normalized Data")
plt.show()
點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 1
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消