亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

線型回歸、邏輯回歸和神經網絡的區別

標簽:
Java

一、线型回归(Linear regression)


webp

webp

二、梯度下降(Gradient descent)

webp

webp

webp

三、逻辑回归(Logistic regression)

        逻辑回归是一个分类算法,逻辑回归的Hypothesis和线性回归非常相似:

webp

webp

webp

四、Bias、Variance

webp

五、Regularization

webp

webp

总结:线型回归和逻辑回归都是适合线型可分的情况

六、神经网络

        实际上,可以将Logistic Regression看做是仅含有一层神经元的单层的神经网络。一般用于二分类网络,线性可分的情况,是一个线性模型,激活函数为Sigmoid,logistic regression的一个优点是logistic cost function 是一个凸函数,可以求得全局最小值,可以用极大似然估计求解。

        神经网络是一个对于处理复杂的非线性模型很优秀的算法。

神经元:

webp

代表一个神经元

webp

神经网络:

        就是一组神经元连接在一起的集合。神经网络的第一层是输入层,值为xi,最后一层是输出层,如果作为分类算法训练则有多少个类别就应该有多少个对应的输出单元,对应的输出单元被激活代表着分类的结果。隐藏层可以有多层,每层可以有多个单元,规模越大训练的模型越复杂。而对于隐藏层中的每个单元本身都是一个逻辑回归的过程,也就是说每个隐藏单元都训练出了一个比前一层更加复杂的特征,这样一层接一层我们就可以训练出越来越复杂的特征,直到得到结果。

webp



作者:owolf
链接:https://www.jianshu.com/p/4cd238493cbd


點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消