亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

通過k-means進行圖像量化壓縮--python實現

標簽:
Python

webp

image.png

逻辑梳理

  • 对于电脑来说,每种颜色都会有一个对应RGB值,比如黑色是[0,0,0],白色是[255,255,255],所以RGB模式下,最多可以区分16581375(255的三次方)种颜色。

  • 另外我们知道,一张图片的大小与分辨率正相关,但其实也与图片颜色的复杂度是正相关的,相同分辨率的情况下,一张纯色图片是比一张五彩斑斓的图片要小的。

  • 一张分辨率为100*100的图片,其实就是由10000个RGB值组成。所以我们要做的就是对于这10000个RGB值聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的RGB值,这样在不改变分辨率的情况下使用的颜色减少了,图片大小也就会减小了。

内容

导入包

import matplotlib.pyplot as pltimport seaborn as snsfrom sklearn.cluster import KMeans  #导入kmeansfrom sklearn.utils import shuffleimport numpy as npfrom skimage import ioimport warnings

warnings.filterwarnings('ignore')

图片读取

original = mpl.image.imread('Yosemite 5.jpg') 
width,height,depth = original.shape
temp = original.reshape(width*height,depth)
temp = np.array(temp, dtype=np.float64) / 255

图像读取完我们获取到的其实是一个width*height的三维矩阵(width,height是图片的分辨率)

训练模型

original_sample = shuffle(temp, random_state=0)[:1000] #随机取1000个RGB值作为训练集def cluster(k):
    estimator = KMeans(n_clusters=k,n_jobs=8,random_state=0)#构造聚类器
    kmeans = estimator.fit(original_sample)#聚类   
    return kmeans

我们只随机取了1000组RGB值作为训练,k表示聚类成 k个簇,对于本文就是K种颜色。

RGB值转化为图像

def recreate_image(codebook, labels, w, h):
    d = codebook.shape[1]
    image = np.zeros((w, h, d))
    label_idx = 0
    for i in range(w):        for j in range(h):
            image[i][j] = codebook[labels[label_idx]]
            label_idx += 1
    return image

聚类

我们选取了32,64,128三个K值来做比较:

kmeans = cluster(32)
labels = kmeans.predict(temp)
kmeans_32 = recreate_image(kmeans.cluster_centers_, labels,width,height)
kmeans = cluster(64)
labels = kmeans.predict(temp)
kmeans_64 = recreate_image(kmeans.cluster_centers_, labels,width,height)
kmeans = cluster(128)
labels = kmeans.predict(temp)
kmeans_128 = recreate_image(kmeans.cluster_centers_, labels,width,height)

画图并保存

plt.figure(figsize = (15,10))
plt.subplot(2,2,1)
plt.axis('off')
plt.title('Original image')
plt.imshow(original.reshape(width,height,depth))
plt.subplot(2,2,2)
plt.axis('off')
plt.title('Quantized image (128 colors, K-Means)')
plt.imshow(kmeans_128)
io.imsave('kmeans_128.png',kmeans_128)
plt.subplot(2,2,3)
plt.axis('off')
plt.title('Quantized image (64 colors, K-Means)')
plt.imshow(kmeans_64)
io.imsave('kmeans_64.png',kmeans_64)
plt.subplot(2,2,4)
plt.axis('off')
plt.title('Quantized image (32 colors, K-Means)')
plt.imshow(kmeans_32)
io.imsave('kmeans_32.png',kmeans_32)
plt.show()

结果如下:


webp


差别还是比较明显的,随着颜色变少,图片也越来越马赛克了。


其实对于图片压缩这块,各大互联网公司投入人力优化,在保证图片清晰的情况下,减小文件大小,这样一能为公司节省一大笔带宽费用,二也能让用户更快的加载出图片,提升用户体验。
这篇文章也只是我在学k-means时候看到的一个案例,对于图片压缩只是很小的一部分,写这片文章的时候我也查了下相关的知识,真要下功夫研究,可是一门大学问。
最后:
peace~



作者:Awesome_Tang
链接:https://www.jianshu.com/p/2ed5bf45d945


點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消