it is possible to use both L2 regularization and dropout
np.sum
没有指明维度,那么np.sum计算的是整个矩阵的和
### START CODE HERE ### (approx. 1 line)
L2_regularization_cost = np.sum((np.sum(np.square(W1)),np.sum(np.square(W2)),np.sum(np.square(W3))))*lambd/(2*m)
L2_regularization_cost 适合于希望超参数少的情况,现在只需要调lambd
如果lambd太大的话,分类就会太“平滑”,导致高偏差.
點擊查看更多內容
1人點贊
評論
評論
共同學習,寫下你的評論
評論加載中...
作者其他優質文章
正在加載中
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦