亚洲在线久爱草,狠狠天天香蕉网,天天搞日日干久草,伊人亚洲日本欧美

為了賬號安全,請及時綁定郵箱和手機立即綁定

吳恩達深度學習課程記錄

標簽:
Python 大數據

it is possible to use both L2 regularization and dropout

np.sum

图片描述
没有指明维度,那么np.sum计算的是整个矩阵的和

L2_regularization_cost

图片描述

### START CODE HERE ### (approx. 1 line)
    L2_regularization_cost = np.sum((np.sum(np.square(W1)),np.sum(np.square(W2)),np.sum(np.square(W3))))*lambd/(2*m)

L2_regularization_cost 适合于希望超参数少的情况,现在只需要调lambd
如果lambd太大的话,分类就会太“平滑”,导致高偏差.

點擊查看更多內容
1人點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優質文章

正在加載中
感謝您的支持,我會繼續努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯系客服咨詢優惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消